
POLITECNICO DI TORINO

Master’s Degree
in Computer Engineering

Master Thesis

A Python framework for the development of hybrid
models of neuromodulation

Supervisors: Author:
prof. Silvestro Micera Claudia Sabatini
prof. Gabriella Olmo

Academic Year 2022 - 2023

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Un altro strappo lungo i
bordi

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Summary

Computational models provide mathematical abstractions of real-world problems and are
typically used to understand the behavior of a physical system, formulate hypotheses, and
make predictions, while reducing the economical and ethical cost of experiments. In the
field of neuromodulation, modeling the effects of neural stimulation is a fundamental step
in the design of neuroprosthetic devices. Currently, the so-called hybrid models (HMs),
which encompass the problems of volume conduction and neural response computation,
have been successfully employed in the context of spinal cord stimulation, deep brain
stimulation and peripheral nerve stimulation. At the state of the art, the main weakness
of HMs is their high computational cost and the consequent difficulty of parameter opti-
mizations requiring many model evaluations. To partially overcome these limitations, we
can resort to the use of surrogate models, which leverage machine learning techniques to
predict simulation outcomes abstracting from biophysical details. Moreover, the modular-
ity of the HM framework allows to reuse a handful of fundamental tools for very different
neuroprosthetic applications. For these reasons, we propose to build a framework to build
HMs of peripheral nerve and spinal cord stimulation using Python, an object-oriented
programming language (OOP), widely used for machine learning. Our models range
from simplified models to very complex models of spinal cord stimulation including verte-
bral geometries and elaborate fascicular morphologies in peripheral nerves. Starting with
the translation in Python of HMs of nerves with a relatively simple morphology already
present in the literature, we have defined a method that allows for the automatic and pro-
grammatic generation of nerves models with merging, splitting and rotating fascicles. We
show how to train a surrogate model, based on 3D UNet, a convolutional neural network
architecture mainly employed for biomedical image segmentation, in the cases of nerves
whose fascicles follow straight or curved paths. We show that the building blocks used to
create a model are the same, regardless of the geometry to be created. Furthermore, the
extensive use of OOP language paves the way for the creation of a single software suite
capable of generating any model with simple integrations, such as the addition of specific
classes, to the existing codebase. Our framework has been thoroughly documented and
use cases and tutorials have been provided, to maximize the usability and expandability
of the framework, both through the inclusion of further modelling modules and machine
learning surrogate models

4

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Acknowledgements

I would like to express my sincere gratitude to my supervisors for their support and
guidance throughout this thesis. Thank you Prof. Micera for providing me with the
opportunity to work in your laboratory and for your belief in my potential. Thank you
Prof. Olmo for your availability and valuable advice.

5

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Contents

List of Tables 8

List of Figures 9

I Chapter1 11

1 Introduction 13
1.1 Overview Nervous System . 13
1.2 Neurons . 14
1.3 Flow of information between CNS and periphery 15
1.4 Nerve and Nerve Fibers . 17
1.5 Neural membrane and Intracellular stimulations 18
1.6 Spinal Cord . 19
1.7 Vertebrae . 21
1.8 Spinal Cord Stimulation . 22
1.9 Hybrid Models . 23
1.10 UNet . 25

II Chapter2 27

2 Materials and Methods 29
2.1 HM Creation . 29

2.1.1 HM Workflow . 29
2.1.2 COMSOL Multiphysics . 30

2.2 Nerves with Straight Fascicles . 31
2.2.1 Geometry . 31
2.2.2 Language and Architecture . 31
2.2.3 Getting Started . 36
2.2.4 Create the Model . 39
2.2.5 Assign Materials . 40
2.2.6 Choose Electrodes . 41
2.2.7 Set Boundary Conditions . 41

6

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.2.8 Compute the Mesh and Solve the FEM 43
2.3 Nerves with complex morphologies . 45

2.3.1 Fascicles . 46
2.3.2 Geometry . 46
2.3.3 Rotating Fascicles . 47
2.3.4 Splitting and Merging Fascicles . 49
2.3.5 Compute the Mesh and Solve the FEM 55

2.4 Spinal Cord . 56
2.4.1 Architecture . 56
2.4.2 Model . 59
2.4.3 Electrodes . 65
2.4.4 Materials . 65
2.4.5 Simulation . 67

2.5 Surrogate Model: 3D UNet . 67
2.5.1 UNet Overview . 68
2.5.2 Training the UNet with nerves with complex morphologies 68
2.5.3 Evaluating the results of the pre-trained UNet for simple nerves . . 76
2.5.4 Calculating and optimizing fiber activation 80

III Chapter3 85

3 Discussions 87
3.1 Results . 87
3.2 Limitations of the Study and

Future Investigations . 89

IV Chapter4 91

4 Conclusion 93

V Appendix 95

A Electrodes 97

B Nerves 101

C Simulations 105

7

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

List of Tables

2.1 Materials for Nerve Model . 41
2.2 Vertebrae Measures C5, C6 e C7 . 61
2.3 Vertebral Measurements . 62
2.4 Material Properties . 66
2.5 Experimental Data . 69
2.6 Experimental Data . 83

8

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

List of Figures

1.1 Overview Nervous System . 14
1.2 Structure of a neuron. 15
1.3 Flow of information between CNS and periphery. 17
1.4 Structure of a nerve. 18
1.5 Action potential propagation. 19
1.6 Structure of Spinal Cord. 21
1.7 Structure of the Spine. 22
1.8 Structure of a neurostimulator. 23
1.9 On the left: Epidural Stimulation. On the right: Transcutaneous Stimulation 24
1.10 Structure of the UNet. 26
2.1 HM Workflow. 30
2.2 HMLab Architecture. 33
2.3 HMLab Architecture of Nerve Classes. 34
2.4 HMLab Class Skeleton. 35
2.5 COMSOL Classes. 36
2.6 COMSOL Methods. 37
2.7 Java methods to create the model. 38
2.8 Creation of electrode TIME. 40
2.9 Example of Electrode called Soft Cuff. 42
2.10 Example of lead field matrix. 44
2.11 Workflow to solve the FEM. 44
2.12 Example of peripheral nerve stimulation with 4 circular fascicles using two

TIME electrodes and a current of 1e-6 A. 45
2.13 The yellow loft represent the perinerium while the grey one the endonerium. 47
2.14 Architecture of RotatingFascicles Class. 48
2.15 A nerve model with rotating fascicles. 49
2.16 Architecture of MergeFasc Class. 50
2.17 List describing the fascicles paths. 51
2.18 Larger fascicle due to the union of two fascicles. 55
2.19 Stimulation of Rotating fascicles model. 57
2.20 Stimulation of Splitting and Merging fascicles modes. 57
2.21 Architecture of Spinal Cord Classes. 58
2.22 Model of Monkey Spinal Cord . 59

9

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.23 On the left Monkey Spinal Cord section. On the right Human Spinal Cord
section. 60

2.24 Spinal Cord model with spinal roots. 61
2.25 Vertebra model component. a.vertebral body with intervertebral disc and

endplate, b.spinal canal and lmaina, c.facet joints, d. spinous processl . . . 63
2.26 On the left a representation of an original vertebra. On the right our

vertebra model . 64
2.27 Vertebrae Model . 64
2.28 Body Model . 65
2.29 Transcutaneous Electrode. 66
2.30 Transcutaneous Stimulation. On the left is the geometric model before

FEM calculation, and on the right is the model that shows the potential
distribution once the FEM has been computed. 67

2.31 Nerve model with rotating fascicles to with four plates with 16 Point Sources
electrodes each. 70

2.32 coord_fasc function. 72
2.33 create_file_training.py script.. 73
2.34 Prediction for nerve with simple morphologies, in the first column you can

see the nerve topography, in the third the target output and in the last the
predicted output. 76

2.35 Recruitment of stimulation multiple sites. 83
2.36 Selectivity of stimulation multiple sites. 84

10

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Part I

Chapter1

11

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Chapter 1

Introduction

In translational studies of neurostimulation, computer models have proven to be highly
effective tools for research and experimentation. Computational models for neurostimu-
lation are built upon the principles introduced by Hodgkin and Huxley in 1952 [19].
These clinically oriented applications originated from the necessity to comprehend the
mechanisms of the electrical stimulation of axons in restoring sensory-motor functions in
disabled subjects [12].
Computational tools are extensively used in many contexts, such as peripheral nerve stim-
ulation, spinal cord stimulation and deep brain stimulation.

This thesis aims to build a user-friendly framework for designing spinal cord and pe-
ripheral nerves stimulation models and to investigate the use of machine learning-based
models for optimizing traditional ones.

1.1 Overview Nervous System

The nervous system is a complex network of specialized cells and tissues that play a cru-
cial role in controlling and coordinating various functions in the human body.
The nervous system is essential for life, it allows us to interact with our environment,
control our bodies, and experience the world around us. Damage to the nervous system
can lead to a variety of problems, including paralysis, sensory loss, cognitive impairment,
and seizures.
The vertebrate nervous system is anatomically divided into two main parts: the central
nervous system (CNS) and the peripheral nervous system (PNS) [24].
The CNS consists of the brain (cerebral hemispheres, diencephalon, cerebellum, and brain-
stem) and the spinal cord. While the PNS includes all the nerves and ganglia (collections
of nerve cell bodies) outside the CNS [24].

13

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Introduction

Figure 1.1. Overview Nervous System

1.2 Neurons

The nervous system operates through the communication of specialized cells called neu-
rons that conveys electrochemical impulses throughout the body.
Neurons consist of a central body which contains the nucleus that houses the genetic ma-
terial (DNA) and plays a vital role in maintaining the cell’s metabolic processes, an axon
and the elaborate arborization of dendrites which are the most obvious morphological sign
of neuronal specialization for communication [24].
The axon is a long, slender, and typically unique unbranched projection that extends from
the cell body. It may travel a few hundred micrometers or much farther, depending on
the type of neuron [24], for example, the axons that run from the human spinal cord to
the foot are about a meter long while the axons in the nerve cells in the human brain
are about no more than a few millimeters long. Axons convey electrical signals over such
distances by a self-regenerating wave of electrical activity called an action potential or
“spike” [24].
Moreover, in some neurons, the axon is wrapped in a fatty myelin sheath, which is pro-
duced by cells called oligodendrocytes in the CNS and Schwann cells in the PNS. In
myelinated axons, the morphology includes distinct regions known as the node of Ranvier
(NoR), internode (IN), and paranode (PN). These regions play critical roles in facilitating
the rapid and efficient conduction of nerve impulses along the axon. In particular NoR is
a gap in the myelin sheath where the axon membrane is exposed and capable of transmit-
ting electrical signals. The IN is the myelinated segment of the axon between nodes, and
the PN is the region adjacent to the node responsible for maintaining the myelin sheath’s
integrity and controlling ion flow.

14

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

1.3 – Flow of information between CNS and periphery

At the end of axon, there are small structures called synaptic terminals which form
synapses, used by neurons to communicate with each other.
Dendrites are branching extensions that extend from the cell body. They receive incom-
ing signals, usually in the form of neurotransmitter molecules released by other neurons.
Dendrites have numerous small protrusions called dendritic spines, where many synapses
with other neurons occur.
The variation in the size and branching of dendrites is enormous, and of critical impor-
tance in establishing the information-processing capacity of individual neurons in fact
neurons with more dendrites are able to receive and integrate information from a larger
number of other neurons.
Neurons can be classified based on the number of dendrites they have, they can be unipo-
lar, bipolar, multipolar and pseudounipolar.

Figure 1.2. Structure of a neuron.

1.3 Flow of information between CNS and periphery
This flow of information between the CNS and the periphery is fundamental to how the
nervous system functions.
It allows us to perceive and respond to our environment, control our movements, and
maintain various bodily functions.
The flow of information between CNS and the rest of the body involves a complex process
that includes both sensory and motor pathways.
Sensory neurons, also known as afferent neurons, are responsible for transmitting infor-
mation from sensory receptors in the periphery to the CNS. The sensory neurons relay the

15

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Introduction

information to the spinal cord or directly to the brain, depending on the type and loca-
tion of the sensory receptor. These specialized cells or structures are located in the skin,
muscles, organs, or sensory organs and detect various stimuli, such as touch, temperature,
pain, and sensory information from the special senses (vision, hearing, taste, smell).
When a sensory receptor detects a stimulus, it generates electrical signals known as action
potentials. In some cases, the information is first processed at the spinal cord level, while
in others, it is transmitted to higher brain centers for conscious perception. Within the
CNS, the information is processed and integrated. This may involve the perception of
sensory stimuli, the coordination of motor responses, or the initiation of reflex actions.
Motor neurons, also known as efferent neurons, are responsible for transmitting commands
and motor signals from the CNS to muscles and glands in the periphery.
There are two main types of motor neurons: upper motor neurons, which, are located in
the CNS, typically in the brain or spinal cord, and provide input to lower motor neurons,
and lower motor neurons, which are located in the spinal cord or in the brainstem, and
they directly innervate muscles or glands. The axons of lower motor neurons extend to
the muscles or glands they control. When stimulated by motor signals, muscles contract,
and glands secrete substances.
Motor pathways also involve feedback mechanisms, such as proprioceptive information
from muscles and tendons, to regulate and adjust motor responses.
The CNS continually integrates sensory information, processes it, and generates motor re-
sponses. The feedback loop allows the CNS to adjust motor commands based on sensory
input and maintain homeostasis.

The autonomic nervous system is responsible for controlling the body’s involuntary func-
tions, such as heart rate, breathing, blood pressure, and digestion. The autonomic nervous
system can be either afferent (sensory) or efferent (motor).
There are also primary neurons which are neurons that are in direct contact with the
periphery. They can be either afferent or efferent. For example, sensory neurons in the
skin are primary afferent neurons, while motor neurons in the muscles are primary efferent
neurons.
Interneurons are neurons that are located in the central nervous system. They receive and
send information to other neurons. Interneurons can be involved in a variety of functions,
such as processing sensory information, controlling movement, and regulating emotions.
Here an example on how the communication works: afferent neurons in the skin detect
pain and send information to the central nervous system. Interneurons in the spinal
cord process this information and send signals to the brain and to other motor neurons.
The motor neurons then send signals to the muscles in the arm to cause the arm to be
withdrawn from the source of pain.

16

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

1.4 – Nerve and Nerve Fibers

Figure 1.3. Flow of information between CNS and periphery.

1.4 Nerve and Nerve Fibers

Peripheral axons are gathered into bundles called nerves. These axons are usually referred
to as nerve fibers. Nerve fibers can be classified based on various criteria, including their
size, function, and the presence or absence of myelin sheaths.
Based on size, they can be classified into Aα, Aβ, Aδ and C. Aα fibers are large-caliber
(diameter 12–20 µm) myelinated fibers, Aβ fibers are smaller (diameter 6–12 µm) myeli-
nated fibers, Aδ fibers are small (diameter 1–5 µm) slightly myelinated fibers and C fibers
are very small (diameter 0.2–2 µm) unmyelinated fibers [26].
Nerve fibers are organized into macroscopic structures called nerve fascicles. The nerve
fibers in a fascicle are bathed in a spongy cushion of connective tissue called the en-
doneurium [26], which is mostly made up of collagen, helping to hold the nerve fibers and
blood vessels in place.
Fascicles are enclosed by a protective connective tissue called the epineurium. The
epineurium is mainly made up of collagen fibers and contains fat cells called adipocytes.
Moreover, the epineurium also provides structural support for tiny blood vessels known
as vasa nervorum. These blood vessels extend from the epineurium and form a network
of small capillaries that penetrate into the endoneurium. So, the epineurium not only
protects the nerve fascicles but also facilitates the delivery of blood and nutrients to the
individual nerve fibers through these tiny blood vessels.
Fascicles are separated from the surrounding epineurial tissue by a thin layer of connective
tissue called perineurium. Perineurial cells are tightly connected to each other through
tight junctions. These tight junctions serve a crucial function by reducing electrical con-
ductivity within the perineurial sheath. This reduction in electrical conductivity helps
create a barrier that can protect nerve fibers from injury, both mechanically and chemi-
cally.
In larger nerves, fascicles are grouped together into bundles that are like the main branches
of a tree. These bundles of fascicles stay together inside the nerve for a long time before
they finally split off and become the major nerves of the body.

17

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Introduction

Figure 1.4. Structure of a nerve.

1.5 Neural membrane and Intracellular stimulations
Nerve cells create a range of electrical signals to communicate and store information.
Even though neurons aren’t naturally great at conducting electricity, they have complex
systems in place to produce electrical signals based on how charged particles (ions) move
across their outer membranes.
The neural membrane, also known as the cell membrane or plasma membrane, is a vital
component of neurons and plays a crucial role in responding to intracellular stimulation
and transmitting electrical signals within the cell. It is a semi-permeable lipid bilayer
composed mainly of phospholipids. It separates the intracellular environment (inside the
neuron) from the extracellular environment (outside the neuron).
Ordinarily, neurons generate a negative potential, called the resting membrane potential.
This resting potential is usually around -70 millivolts (mV).
A highly effective method for studying the electrical signals generated by nerve cells
is by employing an intracellular microelectrode to gauge the electrical potential across
the membrane of neurons [24]. This technique involves inserting a very thin glass tube
(microelectrode) into the cell membrane of a neuron. The microelectrode is filled with a
good electrical conductor, such as a concentrated salt solution.
One type of these electrical signals is the action potential.It transiently abolishes the
usual negative resting potential and causes the electrical charge inside the cell membrane
to become positive [24]. Then Action potential travels down the axons of neurons and
carries information from one neuron to another [24].
If the intracellular stimulation is strong enough and reaches the threshold, it triggers an
action potential. During an action potential, the neural membrane’s permeability to ions
changes, particularly with the opening of voltage-gated sodium channels. This allows

18

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

1.6 – Spinal Cord

sodium ions to flow into the neuron, causing depolarization.
Once an action potential is generated, it propagates along the neuron’s axon. The neural
membrane’s properties, including ion channels, ensure the efficient transmission of the
action potential.
After an action potential, the neural membrane repolarizes to its resting potential and
may even briefly hyperpolarize (become more negative). Ion channels play a crucial role
in this repolarization process, returning the membrane to its resting state.
In normal operating conditions, there is no charge transfer between the electrode and the
extracellular medium. When there is charge transfer, it is through redox reactions and it
leads to corrosion of the electrode.

Figure 1.5. Action potential propagation.

1.6 Spinal Cord
The spinal cord is a part of the vertebrate central nervous system. It controls the volun-
tary muscles of the trunk and upper and lower extremities, serving as a communication
pathway between the brain and the rest of the body.
It is a long, thin, tubular structure that extends from the base of the brain, from the
brainstem, down the back, and it is situated in the spinal canal, immersed in the cere-
brospinal fluid (CSF).
It is enclosed by the vertebral column, but it does not extend the entire length of the
vertebral cana [11].
The vertebral column is divided into cervical, thoracic, lumbar, sacral, and coccygeal re-
gions. Also the spinal cord is divided in regions, it has 31 segments: 8 cervical, 12 thoracic
or dorsal, 5 lumbar, 5 sacral, and 1 coccygea[11]l.
But, spinal cord and vertebral column levels do not correspond because of their differences
in rates of growth during embryonic development , for example the fifth cervical vertebral

19

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Introduction

body corresponds to the level of the sixth spinal cord segment[11].
The spinal cord is approximately 45 cm long in men and 43 cm long in women[11]. Its
width varies, being about 1.27 cm wide in the cervical and lumbar regions, and it widens
to about 6.4cm in the thoracic region[11].
Except the first cervical segment, which has only a ventral root, each of the spinal segment
has a pair of dorsal and ventral roots and a pair of peripheral nerves called spinal nerves
that leave the vertebral canal through the intervertebral foramina[11]. The anterior and
posterior roots are formed from groups of nerve fibers called rootlets. The rootlets are
attached to the spinal cord by a thin layer of tissue called the pia mater. They are re-
sponsible for transmitting signals. Specifically, sensory information, carried by the afferent
axons, travels into the spinal cord through the dorsal roots, while motor commands, while
motor commands, carried by the efferent axons, exit the spinal cord through the ventral
roots. After these roots come together, both sensory and motor axons travel together
within the spinal nerves[24] .
The interior of the cord is formed by gray matter, which is surrounded by white matter.
Gray matter is concentrated in the central region of the spinal cord, forming an "H" or
"butterfly" shape when viewed in cross-section, here the gray matter is conventionally
divided into dorsal (posterior) and ventral (anterior) “horns.”
The ventral horns contain the cell bodies of motor neurons, arranged into longitudinal
columns, while the dorsal horns contain sensory neurons, organized into layers.
In the thoracic region, the posterolateral portion of the anterior column is called the lateral
column. This lateral column contains motor neurons for the autonomic nervous system
in the thoracic and upper lumbar areas.
The spinal cord’s white matter is organized into different sections, called columns, each
with its own functions.
The dorsal columns handle sensory information, carrying them from the skin, muscles,
and joints up to the brain.
The lateral columns contain axon tracts that carry motor signals from the brain down to
the muscles. This includes the lateral corticospinal tract, which is the main pathway for
voluntary movement.
The ventral columns contain axon tracts that carry sensory information from the internal
organs up to the brain, as well as motor signals from the spinal cord down to the muscles.

20

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

1.7 – Vertebrae

Figure 1.6. Structure of Spinal Cord.

1.7 Vertebrae
Vertebrae are the individual bones that make up the vertebral column. They have a dis-
tinct morphology, or structural shape, that is designed to support the body, protect the
spinal cord, and facilitate various movements.
The cervical, thoracic, and lumbar vertebrae are similar in structure except for the first
(atlas) and second (axis) cervical vertebrae [20].
Each “standard” vertebra is composed of a vertebral body (anterior) and a vertebral arch
(posterior) [14].
The atlas is composed of a ring of bone without a body, whereas the axis has an odontoid
process around which the atlas rotates [20].
The vertebral body is the anterior part of the vertebra and is typically the largest and
weight-bearing component. It is shaped like a cylindrical or somewhat rectangular struc-
ture.
The bodies of adjacent vertebrae are separated by a cartilaginous and articulating struc-
ture called intervertebral discs which provide the primary support for the column of ver-
tebral bones and permit the required mobility of the spine [20]. The vertebral arch is a
bony ring-like structure that extends posteriorly from the vertebral body. It forms the
protective vertebral foramen, which houses the spinal cord as it passes through the verte-
bral column. The arch further divides into two lateral pedicles connected to two posterior
laminae, flat plate of bone that connects the spinous process to the vertebral body, a
single spinous process [14].
The spinous process is a bony projection that extends dorsally from the vertebral arch.
It is the part of the vertebra you can feel when you touch your spine, and two transverse
spinous processes that extend laterally at the point where the pedicles are connected to
the laminae [14].
"Between each pair of vertebrae there are two openings, the foramina, through which pass
a spinal nerve, radicular blood vessels, and the meningeal nerves" [20].

21

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Introduction

To connect one vertebra to the next there are facet joints that provide stability to the
spine.
The morphology of vertebrae can vary between the cervical, thoracic, and lumbar regions.
For example, cervical vertebrae often have bifid spinous processes, while thoracic ver-
tebrae have long, downward-pointing spinous processes, and lumbar vertebrae typically
have larger bodies for weight-bearing.

Figure 1.7. Structure of the Spine.

1.8 Spinal Cord Stimulation
Spinal cord stimulation works by implanting a specialized medical device, known as a
spinal cord stimulator or neurostimulator into your spine to deliver bursts of electricity in
order to alleviate chronic pain. Pain signals travel from your body to your brain through
your spinal cord.
The SCS system consists of the generator, leads, and electrodes. The generator is a small
battery-powered device implanted under the skin, often in the upper buttock or abdomen.
The leads, which are insulated wires, connect the generator to the electrodes.

The electrodes are implanted into the epidural space, which is the area between verte-
brae and the outermost membrane of the spinal cord.
Although, the most common stimulation technique id the epidural stimulation, there is
also another kind of stimulation of the spinal cord called Transcutaneous stimulation
which refers to a medical procedure in which electrical stimulation is applied through the
skin to modulate the activity of the spinal cord. It is a non-invasive approach that can

22

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

1.9 – Hybrid Models

Figure 1.8. Structure of a neurostimulator.

be performed without the need for surgical intervention.
The knowledge gained from computational models of spinal cord stimulation for pain con-
trol has led to a rapid expansion of spinal cord stimulation models for other purposes [12].
In experiments SCS computational models have shown that myelinated sensory fibers,
responsible for the activation of motor neurons and other cells, are the main targets of
spinal cord [12]. Additionally, these models have revealed that using a SCS , the action
potentials, generated in primary sensory fibers, disrupt natural sensory feedback, which
is crucial for limb movements [9].
Currently, there are still several open questions and challenge regarding these models,
such us which anatomical structures, biological and biophysical factor plays a pivotal role
on the accuracy of the model [19]. Moreover one open challenge is achieve the automa-
tion of manually process using Artificial intelligence-based algorithms which represent
breakthrough for the development of in silico models of SCS [19].

1.9 Hybrid Models
Modeling involves the use of mathematical constructs designed to mimic the behavior of
a real-world system or a part of it. These mathematical representations are then analyzed
and manipulated as if they were the actual physical system. This approach allows us
to collect data, conduct experiments, and test hypotheses as if we were working directly
with the real system itself. In essence, modeling provides a means to simulate and interact
with complex physical systems through mathematical abstractions. Modeling can help us
reduce the cost and ethical concerns of experiments, such as animal experimentation, by
helping us to Formulate more specific and focused research questions. This helps us to

23

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Introduction

Figure 1.9. On the left: Epidural Stimulation. On the right: Transcutaneous Stimulation

design more efficient and informative experiments. modeling can be thought of as a "de-
noiser" of reality. It provides a valuable means of making sense of complex experimental
results. It enables us to isolate the specific factors we’re interested in and work within
a controlled, noise-free environment. Moreover, since we have perfect control on model
environment, modeling enables us to explore and experiment with different representa-
tions of reality, providing valuable information about aspects of the physical world that
would otherwise remain beyond our reach for measurement, and allowing us to a to answer
questions in fundamental research.
There are various types of models used across different fields of study, and these models
serve different purposes and functions. In the field of neuromodulation, modeling the
effects of neural stimulation is a fundamental step in the design of neuroprosthetic devices
[26] and at the State-of-the-art modelling methods for neuromodulation are based on hy-
brid models (HM).
Hybrid modeling helps us gauge the resilience and sensitivity of experiments in complex
systems in fact we can evaluate how well an experimental setup performs when some
partially controllable parameters, such as the electrode surgical insertion coordinates,
change. Additionally, by comparing experimental outcomes under various configurations
of the given phenomenon, we can also deduce the acceptable ranges for noncontrollable
parameters as nerve morphology and topography.
HMs aim to solve two problems, independent one from the other: a volume conduction
problem and a neural response determination. The volume conduction is the determina-
tion of the electric potential induced by a stimulating electrode in a biological structure
for example compute how the electrode current injection modifies the fibers’ extracellu-
lar medium [26]. This problem arises because electrical signals generated by biological
sources, such as neurons or muscles, can spread throughout the surrounding tissue or
body, affecting the signals detected by electrodes or sensors. To solve this problem the

24

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

1.10 – UNet

finite element modeling (FEM) is normally employed.
FEM is a numerical technique used for solving partial differential equations, the Poisson
equation, over complex physical systems with given boundary conditions [26]. FEM begins
with the mesh phase, which consists of dividing a complex geometry into a finite number
of smaller elements with a simple geometric shape, like triangles, that approximates the
complex shape of the domain. After meshing, the mathematical problem is discretized
by approximating the solution within each element using a set of basic functions. These
basis functions are often piecewise defined, allowing them to represent different functions
within each element. The local element equations are assembled into a global system of
equations. The system of equations is solved, yielding the values of the unknown variables
at discrete points within the domain.
The neural response determination is the prediction of the electric potential induced con-
sequences for single-neuron responses, for example how fibers respond to the imposed
extracellular medium [26]. We are interested in tracking the changes in membrane po-
tential over time at a significant distance from the site of neural stimulation. To do this,
we typically use simplified electrical models that represent the neuron’s behavior. These
models divide the length of fibers into smaller segments and simplify them into cable-like
structures with multiple compartments.

1.10 UNet
At the state of the art, HMs require a high computational cost and many model evalu-
ations in order to optimize parameters. To address these limitations to some extent, we
can turn to surrogate models.
A surrogate model is a simplified system that accurately mimics the behavior of the
original model consequently, it can achieve the same results with significantly less com-
putational resources and time. We use a surrogate model based on a 3D UNet. 3D UNet
is a three-dimensional extension of the U-Net architecture, which is a convolutional neu-
ral network (CNN) commonly used for image segmentation tasks, particularly in medical
image analysis.
The architecture of U-Net is symmetric and consists of two major parts: the feature ex-
traction part and the upsampling part [27]. The first part, also known as contracting path,
is responsible for identifying the relevant features in the input image. Here, the encoder
layers, applying convolutional, rectified linear unit (ReLU) and max pooling operations,
take the input data [27] and gradually transform it into more abstract and detailed repre-
sentations. This process is similar to how feedforward layers work in other convolutional
neural networks. On the other hand, the upsampling part, also called the expansive path,
works on the abstract representations learned by the contracting path and producing a
segmentation map or an output that has the same spatial dimensions as the original input.

25

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Introduction

Figure 1.10. Structure of the UNet.

26

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Part II

Chapter2

27

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Chapter 2

Materials and Methods

The purpose of this Chapter is to describe the materials and methods implemented
throughout this thesis. For the sake of clarity, the chapter will be divided into four
sections. The first will be dedicated to the nerves with straight fascicles model, the sec-
ond to nerves with complex morphologies. Following in the third section, the spinal cord
model will be illustrated, and we will end with the fourth section, where the use of surro-
gate models will be explained.
For the creation of 3D models, the COMSOL tool was used, while all the code was written
in Python.
The entire project has been meticulously documented with examples and explanations
using Sphinx [5], an open-source documentation generation tool widely used to create
technical documentation and static web pages from text sources. Most of the photos in
this thesis are taken from it.

2.1 HM Creation
First of all, a brief introduction on the steps followed to generate all the models and the
tools used.

2.1.1 HM Workflow
For solving the FEM during the creation of nerve models and for the spinal cord model,
we followed the workflow used and described in [26] . It is divided in the following tasks:

1. Simplify the geometry: starting from histology of the entities to be modeled, an effort
is made in order to simplify them using geometric primitives that can be meshed
[26].

2. Choose the electrode: choose the electrode type, its dimension and determine the
electrode-nerve interface geometry [26].

29

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

3. Assign Materials: assign the material properties to each geometric component of the
model [26].

4. Set boundary conditions: set the physics of the model, such as fixing the electrode
currents [26].

5. Generate the Mesh: divide a complex geometry into smaller elements such as trian-
gles in 2D or tetrahedra 3D [26]. Automatic with COMSOL.

6. Solve FEM: compute the electric potential for each mesh node [26]. Automatic with
COMSOL.

Figure 2.1. HM Workflow.

2.1.2 COMSOL Multiphysics
COMSOL Multiphysics is a multiphysics simulation software tool that allows engineers,
scientists, and researchers to model and simulate a wide range of physical phenomena.
It provides a versatile environment for solving complex physics-based problems through
finite element analysis and it also offers tools for organizing models, and user-friendly
features for creating simulation applications.
Additionally COMSOL, through "LiveLink™ for MATLAB, allows to use MATLAB in
order to integrate the full capabilities of MATLAB into COMSOL simulations and appli-
cations. COMSOL also offers a Java-based interface called COMSOL API, which let you
to define all algorithms and data structures of COMSOL model, using Java programming
language. [1]

30

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.2 – Nerves with Straight Fascicles

2.2 Nerves with Straight Fascicles
In this initial phase of the thesis, we aim to create a general framework, called HMLab,
for the programmatic and automatic generation of nerve models with simple morphologies
that is easy to use and easily expandable with additional attributes.
We started from the work presented in the [26], which aimed to create a model capable
of solving the finite element problem (FEM) for peripheral nerve stimulation. Here, the
construction of the model occurred automatically following the steps presented in para-
graph 2.1.1 and making use of COMSOL and ’LiveLink™ for MATLAB’, since the chosen
programming language was MATLAB.

2.2.1 Geometry
Considering all the main components the nerve is composed of, the proposes the following
geometric objects to represent them all in a 3D model made in the COMSOL environment:

• Fascicles: Cylinder OR extrusion of a 2D nerve section approximated as a circle

• Perineurium: 2D contact impedance boundary conditions

• Epineurium: Cylinder OR extrusion of a 2D nerve section approximated as a circle

• Endoneurium: Cylinder

It also adds the saline bath, approximated as a Cylinder, in order to provide a realistic
approximation of the intraoperative extraneural space.
Regarding the representations of the electrodes, geometries were chosen that faithfully
reproduced their real shape, as their shape is already geometric. For this reason, based
on the type of electrode chosen, Cylinders, Blocks or Points were used.

2.2.2 Language and Architecture
From this scenario, we felt the need to reorganize the code to generate a more accessible
and usable framework. First of all, we agreed on a change in the chosen programming lan-
guage, opting for Python instead of MATLAB. To make the code reusable and modular,
always following the basic principle of computer science ’Keep It Simple Stupid’ (KISS),
we agreed that an object-oriented programming language was the best choice. MATLAB,
despite its great flexibility, is not originally designed as an OOP language, as it is primarily
used for numerical computing. Furthermore, the need to reduce the computational cost
of the HM models using machine learning-based surrogate models further encouraged us
to look for a language commonly used in machine learning techniques.
Therefore, the choice fell on Python, an OOP language widely used in the machine learn-
ing and biomedical engineering fields.

First of all, we translated and restructured the code into Python.
The architecture of HMLab, consists of several classes, with the main one being FEM-
Model(), which contains all the methods to generate the objects that make up the model

31

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

and to operate the model itself.
The primary objects in the model for nerve stimulation with straight fascicles are: the
nerve, the fascicles, the electrode, and the saline solution. For each of these entities, a
class has been defined. Specifically, we have the Nerve() class, the Topography() class for
generating fascicles, the Electrode class, and the Saline() class.
With the exception of the Saline() class, the others are abstract classes aimed at defining
a common interface for the classes derived from them.
Specifically, HMLab allows you to choose different types of electrodes, including Time()
and Cuff() types. It also offers the option to choose between an empty nerve, EmptyN-
erve(), and one with fascicles inside, PeripheralNerve(). The latter comes with various
available fascicles geometries, including polylinear or circular morphology (see the Ap-
pendix B for all the available options).
Figure 2.2. provides a more detailed overview of the overall architecture of the entire
framework. While the architecture of the specific classes for the nerve model discussed, is
presented in Figure 2.3..

32

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.2 – Nerves with Straight Fascicles

Figure 2.2. HMLab Architecture.

33

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

Figure 2.3. HMLab Architecture of Nerve Classes.

Every class, except the main one, is structured according to a skeleton that is organized
in this way:

• Class-specific attributes

• Methods common to all objects, defined according to the entity’s peculiarities

• Class-specific methods

See Figure 2.4. for a view of classes skeleton.

34

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.2 – Nerves with Straight Fascicles

Figure 2.4. HMLab Class Skeleton.

35

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

2.2.3 Getting Started

First of all, we have to set the COMSOL model nodes for Hybrid Modelling, define a
3D geometry, the electric conduction physics, a stationary study, and an automatically
generated mesh. To perform these tasks, we rely on the use of COMSOL classes (Figure
2.5.)

Figure 2.5. COMSOL Classes.

To create these classes and execute the previously mentioned tasks, the methods, illus-
trated in Figure 2.6., are executed in the main class.
Specifically, some of these methods are provided by MPh, a Python-based scripting inter-
face for COMSOL, which makes easier to use COMSOL with Python [3].

36

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.2 – Nerves with Straight Fascicles

Figure 2.6. COMSOL Methods.

Unfortunately, the methods provided by MPh are not sufficient to fulfill all the steps, so
we resort to using the Java COMSOL API [8]. To access the Java COMSOL API, we
need to call model.java, which corresponds to the Java object encapsulated within this
instance. Figure 2.7. shows these Java methods
All the previously shown methods are invoked through the main class FEMModel().

37

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

Figure 2.7. Java methods to create the model.

38

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.2 – Nerves with Straight Fascicles

2.2.4 Create the Model

Once the COMSOL environment setup is complete, we proceed to create the actual 3D
model. Through FEMModel() class, the following methods are called, which allow the
creation of the physical model, following the steps previously described.
In particular the methods called are:

• assign_materials(): assign materials to the geometrical entities in the COMSOL
model

• characterize_all_sites(): run a single-site, unit current FEM for each active
site in the implant

• generate_geometry(): generate the model geometry by adding nerve, implant and
saline geometries to the model

• generate_materials(): create materials with their respective physical properties

• get_params(): assign object properties employing the GUI

• get_custom_params(): customize the object with the parameters in input

• get_nerve_params(): generate Nerve object and call its get_params()

• get_implant_params(): generate Implant object and call its get_params()

• get_saline_params(): generate Saline object and call its get_params()

In detail, let’s analyze the various steps to complete all the tasks.
Once the geometric primitives to use for representing the biological entities are selected,
these are created and added to the model using the function generate_geometry(), which
inside call add_to_model() for each object present in the model.
Figure 2.8. shows an example of how this method works, creating an electrode TIME.

39

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

Figure 2.8. Creation of electrode TIME.

2.2.5 Assign Materials
In more detail, we can analyze the task related to material assignment, which occurs
through several steps.
First, materials are selected and generated with their respective properties, and then the
assignment takes place.
To generate the materials, we have implemented the method generate_materials(),
which consists of calling the following Java COMSOL API :

• model.java.material().create(): create a new material for the current geometry
[8]

40

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.2 – Nerves with Straight Fascicles

• model.java.material().propertyGroup(<grouptag>).set(<pname>,<expr>): set
the expression for the given material property [8]

The materials used and created are listed in Table 2.1.

Tag Name Relpermittivity Electricconductivity
endo Endoneurium 80 0.083-0-0-0-0.083-0-0-0-0.571
peri Perineurium 80 0.0009
epi Epineurium 80 0.083
fib Fibrosis 80 0.1
sal Saline 80 2

dura Dura Mater 1 0.0025
arac Arachnoid 1 2
pia Pia Mater 1 0.016
as Sites 1 1.0e-10

elec Elecshaft 1 1.0e-10

Table 2.1. Materials for Nerve Model

For the assignment, we have implemented the method assign_materials(), which
consists the following steps:

1. Select the entities to wich ypu want to assign the material. To do it we can use Java
COMSOL API:

• model.java.selection(): select the domain [8]
• model.java.selection(<tag>).entities(): returns the geometric entities of

the selection on the given geometry as an integer array [8]

2. Assign materials to the selected entities. To do it we can use Java COMSOL API:

• model.java.material(<tagmat>).selection().set(): set a specified mate-
rial to the entities selected [8]

2.2.6 Choose Electrodes
Select the electrode type, specify its dimensions, and define the geometry of the electrode-
nerve interface.
This task is performed using the class Implant().
All the electrode types with their respective parameters are in the Appendix, here we
show only the Soft Cuff type (Figure 2.9.)

2.2.7 Set Boundary Conditions
Set the physics of the model, such as fixing the electrode currents and the 2D contact
impedance for modelling the Perineurium.

41

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

Figure 2.9. Example of Electrode called Soft Cuff.

You can use the following method to assign a current to the electrodeset_active_site_current(),
which consists of calling the following Java COMSOL API :

• model.java.material().create(): create a new material for the current geometry
[8]

• model.java.physics(<tag>).feature(<ftag>).set(<pname>,<value>): set a pa-
rameter value to the feature instance of physics interface [8]

To model the perineurium we use the contact impedance, which is relates to the electrical
resistance encountered at the interface between an electrode and the tissue or medium it

42

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.2 – Nerves with Straight Fascicles

is in contact with.
You can follow these steps:

1. Select all the boundaries of each fascicle:. To do it we can use Java COMSOL API:

• model.java.component(<tag>).selection().create(<tag>,<type>): create
a selection of the specified type [8]

• model.java.component(<tag>).selection(<tag>).set(property,<value>):
set a property value for the selection [8]

• model.java.component(<tag>).selection(<tag>).entities(): return the
geometric entities of the selection in given geometry as integer array [8]

2. Create and apply contact impedance boundary conditions. To do it we can use Java
COMSOL API:

• model.java.physics(<tag>).selection().create(ftag>,feature,<dim>: set
new feature instance to the physics interface and initializes the feature [8]

2.2.8 Compute the Mesh and Solve the FEM
At this point, to obtain a functional model, we need to generate the mesh and solve the
FEM. These final steps are accomplished using two functions, solve_single_run() and
characterize_all_sites(), present in the FEMModel() class.
These functions allow us to connect our scripts to the COMSOL server and delegate these
tasks to it.
The methods used by COMSOL:

• solve(study=None) : solves the named study, or all of them if none given. [3]

• evaluate (expression, unit=None, dataset=None, inner=None, outer=None):
Evaluates an expression and returns the numerical results. We used: evaluate([’V’])
where ‘V’ stands for Potential. [3]

• model.java.result().export().create(<etag>,<ptag>,etype): create and ex-
port feature [3]

Once these final steps are completed, we obtain a text file in the .txt format contain-
ing the lead field matrix (Figure2.10.), important to comprehend the stimulation. This
matrix includes the coordinates of the mesh nodes and their corresponding potential value.

HMLab allows us to compute the potential both at the nodes of the mesh generated
by COMSOL and at points with coordinates of our choice. This is done by passing the file-
name containing coordinates (x, y, z) of nodes as a parameter to the characterize_all_sites()
function.
In addition to the lead field matrix, we also obtain an .mph file (COMSOL model file) that
can be opened in COMSOL for a visual representation of the generated 3D model. This

43

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

allows us to interact with the model through the COMSOL GUI for a visual understand-
ing of the results. We can obtain this file invoking the COMSOL API save(path=None,
format=None)[3].
You can see the entire workflow to solve the FEM in Figure 2.11..

Figure 2.10. Example of lead field matrix.

Figure 2.11. Workflow to solve the FEM.

44

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.3 – Nerves with complex morphologies

To conclude this section, an example of peripheral nerve stimulation with 4 circular fasci-
cles using two TIME electrodes and a current of 1e-6 A (Figure 2.12.). For more examples
see the Appendix C.

Figure 2.12. Example of peripheral nerve stimulation with 4 circular fascicles using two
TIME electrodes and a current of 1e-6 A.

2.3 Nerves with complex morphologies
In this section, we will discuss the creation of 3D models for nerves with rotating fascicles
and nerves with fascicles that join and split.
For the creation of these models, we followed the same strategy proposed by HMLab,
implemented in the previous section. In fact, we used the same framework and, conse-
quently, the same classes and methods as before, with the addition of specific classes for
these new fascicular topographies.
This demonstrates how HMLab is a framework capable of generating even more complex
models than the initial one with the simple addition of classes and methods.

Since the biological entities remain the same, the morphology does not vary compared

45

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

to the models proposed previously. The only thing that changes is the fascicular topog-
raphy.
The same tools, COMSOL and Python, have been consistently used.

2.3.1 Fascicles
Fascicles in a nerve are groups of nerve fibers gathered together, surrounded by connective
tissue called perineurium, which constitute the basic unit for the transmission of neural
signals through the peripheral nervous system. In general, the size of fascicles is an
anatomical feature that can vary significantly among different nerves and individuals.
For example, thinner nerve structures can have fascicles with diameters often less than a
millimeter, while larger nerves may contain fascicles with diameters of several millimeters.
As a result, it becomes challenging to have an accurate knowledge of their topography,
which depends on the function that the fascicles perform and their location in the nervous
system. We know that there are parallel fascicles, intertwined fascicles, branched fascicles,
and mixed fascicles.
Consequently, we felt the need to create stimulation models that represented more complex
topographies than the straight one presented in the previous section. In particular we
modeled rotating fascicles and merging and splitting fascicles.

2.3.2 Geometry
Starting from the geometric objects used in Section 2.2.1 to describe a nerve, we have
decided to make the following changes regarding the choice of geometric primitives:

• Perineurium: Loft of a Circle.

• Epineurium: Loft of a Polygon.

• Endoneurium: Loft of a Circle

• Saline Bath: Cylinder

• Electrodes: Blocks or Cylinders or Points

Since COMSOL does not allow for the creation of an entity that rotates with random
angles changing along its path, or entities that fork and then converge, we have opted to
divide the nerve into multiple sections of the same length.
At this point, we have created the fascicles using the COMSOL object called "Loft" [2].
In fact, in COMSOL, the "Loft" is used to create a smooth, continuous surface or solid
shape by connecting multiple cross-section profiles. It is useful to create complex shapes
that smoothly transition between different cross-sectional profiles [2].
We have chosen a circular morphology for our fascicles, and consequently, we have used
the same data (coordinates for the epineurium, center, and radius of the endoneurium)
used for generating the nerves with straight circular fascicles. This implies using circles for
the endoneurium and polygons for epineurium as profiles from which the lofted structures
were generated.

46

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.3 – Nerves with complex morphologies

Another difference from the straight fascicles is the implementation of the perineurium.
Indeed, since COMSOL does not allow the application of contact impedance to curved
structures, we have decided to implement the perineurium in the same way as the en-
doneurium but with a diameter 6% larger (Figure 2.13.).

Figure 2.13. The yellow loft represent the perinerium while the grey one the endonerium.

2.3.3 Rotating Fascicles
For the rotating fascicles,we create a new class called ‘RotatingFascicles()’ with all the
methods described in HMLab. The architecture overview is shown in the Figure 2.14.

We use the geometry we analyzed before adding some details. To the circular profiles
used for the Lofts generation, a basic rotation of 30 degrees plus a random delta ranging
from 0 to 20 degrees was applied, section by section. These latter parameters were exper-
imentally determined to ensure that the four fascicles in the model do not intersect.
Taking a closer look at the implementation of this model, we can observe that whenever
objects are created inside other objects, such as the endoneurium wrapped by the per-
ineurium, surrounded by the epineurium, which is then immersed in the saline solution,
a series of COMSOL operations must be performed. Specifically, if two objects touch
each other, their intersection must be calculated and removed from one of the objects
in question to avoid duplicates. The operations that enable us to achieve this result are
"Intersection" and "Difference" [2].
All these operations increase the complexity of the model, resulting in an increased com-
putational load and difficulty in mesh generation. Exactly this difficulty with mesh gen-
eration has led us to impose a constrain on this model.Specifically, to overcome this
inconvenience and obtain a functional model, we decided to simplify the geometry by
imposing in advance that the rotating fascicles would rotate at a random angle but within
a certain range of values to ensure that they did not intersect. This decision was made
both to address the problem described earlier and because these potential intersections

47

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

Figure 2.14. Architecture of RotatingFascicles Class.

were not of particular interest for the model we wanted to create.
A model with rotating fascicles is visible in the Figure 2.15., in this example we used 4
sections to compose the nerve.

To complete the model and make it usable for simulating stimulation, we needed to
add electrodes. In the example shown in the Figure 2.19., PointSources electrodes were
created, specifically four grids of 16 electrodes each. This step was carried out by calling

48

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.3 – Nerves with complex morphologies

Figure 2.15. A nerve model with rotating fascicles.

the Implant() class first, through the main FemModel() class, to decide how many and
which electrodes to create, and then the PointSources() class.
To create grids at predefined heights, we added the add_to_mode_height() method in
Implant(), which takes as input the vector with the heights at which the grid should be
created.
In PointSources(), we also added a method add_to_model_height() that modifies the
original add_to_model(), as it requires the input parameter representing the height at
which to generate the grid of points.

2.3.4 Splitting and Merging Fascicles
For this model, we have created a class called MergeFasc() that implements all the basic
methods described in the presentation of our framework. The architecture overview is

49

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

shown in the Figure 2.16..

We have used the same geometric approximations illustrated in section 2.3.2. In this

Figure 2.16. Architecture of MergeFasc Class.

case, our fascicles can split and subsequently join different fascicles. For this model, a
new parameter has been added, a list containing a number of sublists equal to the number
of sections, inside which there are the fascicles numbers indicating the endpoint of the
fascicles sublists index, as shown more clearly in the Figure 2.17..

50

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.3 – Nerves with complex morphologies

Figure 2.17. List describing the fascicles paths.

The function created here to generate the model is more complex than the others because,
first, for each section, it needs to separate the construction of fascicles that either merge or
diverge from those that remain straight. We perform this check by looking at the length
of the list corresponding to the fascicle under analysis. If length is 1, it means the fascicle
undergoes no changes. In this model, fascicles that completely merge into another fascicle
have not been considered.
Then, we have divided the function into two parts. One is dedicated to the fascicles that
remain intact, and the other for fascicles that undergo mutations. For the fascicles that
do not divide, endoneurium and perineurium have been created using lofts, as shown for
the other models.
We provide a detailed view of all the steps:

1. Create inferior loft section:

2. Create Endoneurium base section:

51

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

3. Create Perineurium base section:

4. Create superior loft section:

5. Create Endoneurium superior section:

6. Create Perineurium superior section:

52

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.3 – Nerves with complex morphologies

7. Create all lofts:

In the second part, the more complex one, as many lofts as the arriving fascicles were
created, starting from the fascicle that initially divided. For example, if fascicle number
1 divides into 3 and then merges with fascicles 2, 3, and 4, three lofts will be created.
For each loft, the base is always the circle representing the starting fascicle, ’1,’ and the
endpoint circles are those of the three arriving fascicles, ’2,’ ’3,’ and ’4’.
Their intersection is calculated using the COMSOL method [2]:
model.component(<ctag>).geom(<tag>).create(<ftag>,"Intersection"), which is then
subtracted from all entities except one, using the COMSOL method [2] :
model.component(<ctag>).geom(<tag>).create(<ftag>,"Difference") .
Then, to create a single entity for each fascicle, we merged these lofts using the COMSOL
method [2]:
model.component(<ctag>).geom(<tag>).create(<ftag>,"Union").

Since the construction of the lofts remains the same, only the number of fascicles cre-
ated changes, we focus on the various intersections, differences, and unions.

• Intersection:

• Difference:

53

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

• Union:

The examples above show the operations performed only once on the perineurium, but
the same operations were also carried out on the endoneurium and multiple times.
At this point, once the construction of all the fascicles in a section is completed, inter-
sections need to be calculated, and consequently, differences need to be computed, for all
the fascicles that have merged into the same final fascicle. To do this we used the same
operations as before: Intersection, Difference and Union.
Furthermore, an additional function has been created for calculating the occurrences of
a specific fascicle in each section, a useful function for identifying all intersections in the
incoming fascicle during the final phase of section construction. Again, we provide the
piece of code:

We also create a function useful for calculating the radius of the circular section of the
incoming fascicle. It should be noted that whenever two fascicles merge, they will create
a larger entity than the one they started with (Figure 2.18.). We also provide the code
for this, for further clarity:

54

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.3 – Nerves with complex morphologies

Figure 2.18. Larger fascicle due to the union of two fascicles.

2.3.5 Compute the Mesh and Solve the FEM

Once we have obtained the geometric model, we proceed to solve the FEM. To do this, as
explained in the previous section, we use the characterize_al_sites() method, which
in turn calls the solve_single_run() method.
At this point, we decide to pass it a file with the coordinates of the nodes where COMSOL
will automatically calculate the potential. This file was generated using the create_sites()
method in FEMModel() class.
This function described below:

55

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

We used the radius of the nerve as input and 64 coordinates in order to obtain a cube of
64x64x64 dimension, this will be useful for the next phase.
The Figures 2.19. and 2.20. visually show the results obtained for the stimulation of a
single Point of Sources electrode at a current of 1e-6 A through the COMSOL GUI, for
the Rotating fascicles model and Splitting and Merging fascicles model.

2.4 Spinal Cord
In this section, we will address the creation of the 3D model for the spinal cord, a model
useful for simulating both epidural and transcutaneous stimulations.
For the creation of this model, we followed the steps outlined in Section 2.1.1 and realized
that our HMLab framework, originally designed for peripheral nerve models, could be used
as a foundational framework that is easily expandable and reusable for complex models.
Consequently, we utilized HMLab’s existing classes and added specific ones for the spinal
cord.
Once again, for this model, we made use of COMSOL and Python.

2.4.1 Architecture
To represent the spinal cord, we divided it into various components, each of which then
became a class: RootBranch(), SpinalRoot(), SpinalSegment(), SpinalCrossSection() and
SpinalCord().
Additionally, to simulate transcutaneous stimulation, we added the Body() class for creat-
ing the biological layers that make up the back, the Cervical_Vertebra() class for creating
the cervical vertebrae, and an TranscutaneousElectrode() class for a new electrode type.

56

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.4 – Spinal Cord

Figure 2.19. Stimulation of Rotating fascicles model.

Figure 2.20. Stimulation of Splitting and Merging fascicles modes.

57

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

All of these objects, except for the electrodes, are created starting from the class called
SpinalCord(), which is responsible for creating all the entities that compose it.
The classes that our model will utilize, which have already been used by the nerve models,
are the following: FEMModel(), Implant(), Electrode(), and PointSources(). Specifically,
only two types of electrodes will be used: PointSources for epidural stimulation and the
TranscutaneousElectrode for transcutaneous stimulation.
Figure 2.21 is an overview of the classes dedicated to the spinal cord along with their
respective functions.

Internal class base remains the same as that used for nerves, with appropriate modifi-
cations specific to different geometries.

Figure 2.21. Architecture of Spinal Cord Classes.

58

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.4 – Spinal Cord

2.4.2 Model
The starting model from which we began (Figure 1) was obtained through the segmenta-
tion of images produced by MRI and CT scans on monkeys(Figure 2.22.)[?].
These data were then used to create the sections to which the Loft operation provided by
COMSOL was applied, resulting in the monkey’s spinal cord at the cervical level. This
initial model was done using MATLAB, so here too as we did for nerves, we had to first
perform a translation to obtain the code in Python.

Figure 2.22. Model of Monkey Spinal Cord .

From a biological perspective, the spinal cords of primates and humans do not have
significant differences except for their sizes.
Therefore, starting from this consideration, we focused on their dimensionality. In par-
ticular, we used a tool for the automatic segmentation of the human spinal cord PAM50
Template [13]to assess the difference in sizes between the spinal cords of the two species.
We observed that at the cervical level the differences in the diameter length were negligi-
ble, while the discrepancy in overall height was particularly noticeable. Indeed, the length
of the monkey’s spinal cord is approximately 30 cm, while that of humans is about 45 cm.
As a result, the first thing we did in our model was elongate the three spinal cord sections
examined for the model (Figure 2.23.) [21].
Once the structure of the spinal cord was adjusted, the other entities to be constructed
are:

• Spinal Root

• Vertebrae

• Body

59

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

Figure 2.23. On the left Monkey Spinal Cord section. On the right Human
Spinal Cord section.

Spinal Root In the original model we started from, the spinal roots were also modeled.
They were present for all three modeled sections, but naturally, they were sized according
to the primate spinal cord. In this case, since the project’s goal is to have a more general
model, we decided to temporarily neglect this part to focus on constructing other equally
fundamental components.
Therefore, we retained the original root branches and adjusted their positioning along the
human spinal cord as needed. The spinal cord model with spinal roots can be seen in the
Figure 2.24..

Vertebrae

Measures To obtain accurate data, we conducted a search in the scientific literature
to gather all the necessary measurements. Since there were no comprehensive studies
containing all the required measurements for geometry construction, we selected studies
that presented common and highly consistent measurements. In cases where multiple
measurements were available for a given parameter, we calculated the average to obtain
a more representative estimate.
The measurements taken from the scientific literature provide a crucial starting point for
creating a realistic model. However, it’s important to note that human vertebrae can vary
significantly from individual to individual, so it’s necessary to take this variability into
account when developing the model.
The measurements of all the components that make up the vertebrae are visible in the

60

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.4 – Spinal Cord

Figure 2.24. Spinal Cord model with spinal roots.

Table 2.2.[29]. However, to make the model more general and easier to implement, it was

Table 2.2. Vertebrae Measures C5, C6 e C7

Vertebra C5 C6 C7
Height 13.27 13.55 14.97

Diameter Superior Endplate 16.51 17.07 17.63
Diameter Inferior Endplate 18.05 18.07 17.05

Foramen transversaria (right) 5.475 5.43 4.595
Foramen transversaria (left) 5.645 5.21 4.685

Anterior margin to anterior margin of transverse foramen 7.29 7.31 10.21
Posterior margin to posterior margin of transverse foramen 2.75 3.42 0.91

Medial margin to medial margin of transverse foramen 4.99 5.25 5.62
Lamina length 14.13 1.41 14.86
Lamina width 2.83 2.89 3.13
Lamina height 10.44 11.6 11.97
Spinal process 12.04 13.78 22.78
Total length 38.39 39.52 56.00

61

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

decided to use fixed measurements for all vertebrae in the modeled sections, C5, C6 and
C7, except for the largest one, specifically C7.
All the measurements adopted for the various components are listed in the Table 2.3..

Table 2.3. Vertebral Measurements

Measurement Vertebra Vertebra C7
Height 13.27 13.27
Diameter Superior Endplate 14 14
Diameter Inferior Endplate 20 20
Foramen transversaria (right) 5 5
Foramen transversaria (left) 5 5
Anterior margin of vertebral body to anterior margin of
transverse foramen

7.29 7.29

Posterior margin of vertebral body to posterior margin of
transverse foramen

2.75 2.75

Medial margin of Luschka joint to medial margin of trans-
verse foramen

5 5

Lamina length 14.15 14.33
Lamina width 3 3
Lamina height 9.15 9.15
Spinal process 12.12 12.75
Total length 39.35 45

We also used a 15° angle to model the typical inclination of the vertebrae [10].

Geometry To simplify the geometry and proceed with the model construction, we
first analyzed the components of the vertebra. Subsequently, we assigned a geometric
primitive to each of them.
Specifically, we divided the vertebra into the vertebral body, transverse foramen, spinous
process, and lamina. Additionally, we also considered the biological entities present be-
tween the various vertebrae, namely: intervertebral discs, endplates, and facet joints.
Considering the state of the art and the morphology of the various components, we decided
to adopt the following geometric simplifications:

• Intervertebral Discs: loft of elliptical sections [30]

• Endplates: loft of elliptical sections

• Facet Joints: loft of elliptical sections

• Vertebral Body: loft of elliptical sections

• Transverse Foramen: loft of circular sections

62

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.4 – Spinal Cord

• Spinous Process: loft of triangular sections

• Lamina: loft of polygonal sections

• Spinal Canal : loft of elliptical sections [16]

The Figure2.25. displays the representations of these entities in COMSOL.
This is how we obtained the final model Figure 2.26. and the entire vertebrae model
Figure 2.27..

Figure 2.25. Vertebra model component. a.vertebral body with intervertebral disc and
endplate, b.spinal canal and lmaina, c.facet joints, d. spinous processl

Body The back was modeled following [18] creating multiple cylinders one for each layer
it consists of. Specifically, through the Body() class, starting from the outermost layer, we
generated an air cylinder, which is used to create an environment with physical properties
around the back. This is particularly useful for transcutaneous stimulation.
Then, a temporary metal cylinder was created for the electrode generation, specifically
for transcutaneous stimulation. Moving inward, there’s a cylinder representing the skin,
followed by one indicating the layer of fat, until we reach the innermost layer closest to
the spinal cord, defined as the general neck.
All these layers were then characterized by specific physical properties. These will be
detailed in the "Materials" section of this section.
The Figure 2.28. illustrates all the different layers modeled as cylinders.

63

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

Figure 2.26. On the left a representation of an original vertebra. On the right
our vertebra model

Figure 2.27. Vertebrae Model

64

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.4 – Spinal Cord

Figure 2.28. Body Model

2.4.3 Electrodes

The electrodes used for epidural stimulation are of the ’Point sources’ type (see the Ap-
pendix A) and are created using the Electrode() and Implant() classes and their methods
provided by HMLab. As for transcutaneous stimulation, it differs in that the electrodes
do not enter the nerve but are placed on the outer layer of the skin. Therefore, we cre-
ated a new type of electrode called "Transcutaneous Electrode" which has the geometry
of a parallelepiped. This was created by the intersection and then the difference between
the metal cylinder, an object created by the Body() class, and the Block object created
by the TranscutaneousElectrode() class. Figure 2.29.shows an example of Transcutaneous
Electrode.

2.4.4 Materials

As for the material assignment and generation process, the methods described in the
previous sections were used. In this case, the materials chosen will be the only change.
We chose to assign the typical physical properties of muscles to the object representing
the neck because they occupy a significant portion of the space. Since they were not yet
present in the model, we assumed they could still influence the stimulation results.
The chosen materials with their properties are described in the Table 2.4. [17] [15] [28]
[23] [22] [25] .

65

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

Figure 2.29. Transcutaneous Electrode.

Table 2.4. Material Properties

Tag Name Relpermittivity Electricconductivity
air Air 1.0 1.0 × 10−15

skin Skin 1.0 × 10−3 0.0025
fat Fat 1.0 × 107 0.04
thorax Thorax 1 0.35
CSF Cerebrospinal Fluid 100 1.7
fat_sc Fat_SC 1.0 × 107 0.04
wm White Matter 3.5 × 107 0.083 − 0 − 0 − 0 −

0.083−0−0−0−0.6
gm Gray Matter 4.5 × 107 0.23
dura Dura Mater 1 3 × 10−2

bone Bone 4.5 × 107 0.02
anulus Anulus Fibrosus 4.5 × 107 0.75
nucleus Nucleus Pulposus 4.5 × 107 0.02
cartilage Cartilage 4.5 × 107 0.18

66

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.5 – Surrogate Model: 3D UNet

2.4.5 Simulation

In this case as well, we followed the same procedure described previously, using the same
methods presented by HMLab. Obtaining for transcutaneous stimulation the model shown
in Figure 2.30., where on the left is the geometric model before finite element method FEM
calculation, and on the right is the model that shows the potential distribution once the
FEM has been computed.

Figure 2.30. Transcutaneous Stimulation. On the left is the geometric model before
FEM calculation, and on the right is the model that shows the potential distribution
once the FEM has been computed.

2.5 Surrogate Model: 3D UNet

As mentioned in the introduction, HMs have a high computational cost; therefore, the
use of surrogate models based on machine learning techniques is opening the way to more
optimized scenarios.
So, we have decided to follow this path using a convolutional neural network (CNN) called
3D UNet [27].

67

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

2.5.1 UNet Overview
The UNet architecture is commonly used in image segmentation and medical image anal-
ysis applications.
The "U"-shaped structure with connections between descent and ascent blocks allows the
model to retain detailed information during the process of reducing the spatial dimension
and subsequently use it to achieve accurate segmentation.
Taking a closer look from the inside, we can identify three main steps for defining the
network: Definition of DownBlocks, which is used to reduce the spatial dimension of the
input, Definition of UpBlocks, which is used to increase the spatial dimension of the input,
and Definition of UNet, which represents the entire architecture of the UNet.

The network we used takes two input cubes, each with dimensions of 64x64x64. The
first cube represents the nerve topography, specifically indicating the presence or absence
of fascicles. The second cube represents the stimulation protocol, which consists of the
injected cathodic or anodic stimulation currents. The output is also a 64x64x64 cube
containing the distribution of electric potential calculated for that nerve cube.
Based on this already implemented and tested scenario, our work has been divided into
three phases:

1. Training the network with nerves with complex morphologies.

2. Evaluating the results of the pre-trained network for simple nerves.

3. Calculating and optimizing fiber activation.

2.5.2 Training the UNet with nerves with complex morphologies
To train the network with nerves of complex morphologies, we first analyzed the data and
its format for input preparation into our network. In particular, our function required a
set of MATLAB files representing the coordinates of positions in millimeters and pixels
of active sites (electrodes), the potential value for each active site at each node, the nerve
topography expressed in binary values, and two dataframes.
More in details it requires:

1. alpha_fem.mat : This file consists of n.electrodes x (64x64x64), where each cell
corresponds to the potential value calculated for that electrode located at a specific
position (x, y, z).

2. alpha_fem_<ex>_<elec>.mat: It includes two files:

• The alpha_fem.mat
• The alpha_fem_red: consists of 1 x (64x64x64), where each cell corresponds

to the potential value calculated for that electrode <elec> located at a specific
position (x, y, z) and belonging to experiment number <ex>. We have as many
files of this type as there are electrodes.

68

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.5 – Surrogate Model: 3D UNet

3. experiment_<ex>.mat: It includes two files:

• The nerve_solid: consists of a matrix of zeros and ones, indicating the presence
of fascicles in the nerve volume.

• The site_ind_locs: consists of n.electrodes x 3,where each row corresponds to
the pixel coordinates (x, y, z) of the specific electrode. We have as many files
of this type as there are electrodes.

4. site_locs: consists of n.electrodes x 3,where each row corresponds to the mm coor-
dinates (x, y, z) of the specific electrode.

5. dataframe.pkl: you need two dataframes one for the training and one for the valida-
tion. With the following structure:

• Id experiment
• Number of active site
• Id active site used
• Value of current in mA

See Table 2.5. for an example.

Table 2.5. Experimental Data

id_experiment n_active_sites iid_active_sites currents
0 1 1 [20] [730]
1 1 1 [61] [380]
2 1 1 [48] [980]
3 1 1 [5] [610]
4 1 1 [48] [35]
5 1 1 [20] [115]
6 1 1 [24] [935]
7 1 1 [10] [75]
8 1 1 [17] [670]
9 1 1 [0] [590]
10 1 1 [42] [575]

To obtain the information necessary to create these files, we used our previously created
models. Specifically, we created a nerve model with rotating fascicles to which we applied
four plates with 16 Point Sources electrodes each, resulting in a total of 64 electrodes (see
the COMSOL model in the Figure 2.31.).
Subsequently, using the methods from the FEMModel() class explained in the first sec-
tion, we calculated the FEM for each active site in 64 nodes, which remained the same
for each site.
This process yielded 64 lead field matrices of size 64x64x64.

69

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

Figure 2.31. Nerve model with rotating fascicles to with four plates with 16
Point Sources electrodes each.

This information is not sufficient. To obtain the files with the coordinates of our active
sites, we added two functions, called in PointSources() class in HMLab. One function,
save_coordinates(), is used to save the positions in millimeters of our sites and to call
another function, mm_pixel(), used to convert these positions from millimeters to pixels
and then save them. save_coordinates() takes as input the coordinates of the active
site and the minimum section length represents one pixel.
In particular, we adopted the following conversion strategy:
Considering our cube with dimensions 64x64x64, we performed the following steps:

1. Assigned the value 32 to x = 0 and y = 0 mm since it is the average value within
the cube. This step was necessary because pixels cannot have negative values.

2. Assigned the following values to all other x and y values:

• y = 32 + y ∗ 32
• x = 32 + x ∗ 32

This was done to ensure non-negative pixel values.

3. Divided the total length of the nerve by 64 to obtain the length of nerve sections
corresponding to one pixel.

4. Assigned z = (z_mm/section_length).

5. Rounded x, y, and z to the nearest integer since pixels accept integer values.

70

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.5 – Surrogate Model: 3D UNet

To create the datasets to use as the training set and validation set, we used the build_dataframe()
function, which creates a dataframes structured as shown in the example before.
The last piece of information needed to proceed with creating the files for training is the
binary representation of the nerve’s topography.
This step is where we encountered the most difficulty due to the complex geometry of the
fascicles. The matrix we aimed for consists of 0s and 1s, where 1 indicates the presence of
a fascicle and 0 indicates its absence. By "matrix," we are referring to our 64x64x64 pixel
cube representing our nerve.
As a result, we decided to divide this task into two sub-tasks:

1. Calculating the coordinates of the fascicles for each section.

2. Converting the coordinates calculated in step 1 into pixels and creating the cube
with 0s and 1s.

Calculating the coordinates of the fascicles for each section To accomplish this,
we created a function called coord_fasc(), which takes as input the number of the sec-
tion that composes the nerve (see nerve model construction with complex morphologies),
the name of the loft indicating the perineurium of a fascicle for that section, model, an
array with the height of that section, and the length of the section corresponding to one
pixel, obtained by dividing the length of the nerve by 64.
Figure 2.32. provides a clearer outline of the function’s structure.

Within this function, through a for loop iterating as many times as there are pixels in the
section, we create small COMSOL cylinders and calculate their intersection with the loft.
Here, thanks to the use of the COMSOL method:
model.java.component(<comptag>).geom(<geomtag>).measure().getVtxCoord() [8]
, we are able to obtain the x, y, z coordinates of the cylinder-fascicle intersection. We per-
form these operations for all the mini-sections representing one pixel in the nerve section,
and we obtain a list with the intersections coordinates.
The coord_fasc() function is called during the creation of each fascicle in the model, in
the add_to_model() method.

All of these steps became necessary because when we create the rotating loft or the loft
that splits or merges, we don’t have precise control over the exact positions it will occupy
along the path between the input sections defined for the loft.

71

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

Figure 2.32. coord_fasc function.

Converting the coordinates calculated in step 1 into pixels and creating the
cube with 0s and 1s Once we have all the intersections coordinates of all the fascicles
in all the mini-sections of the nerve section under consideration, we proceed with the
conversion to pixels and populating our binary cube.
To do this, we created another function called pixel_topography(). Starting from the
list with all the intersection coordinates for each fascicle and for each section-pixel, it
selects only the maximum and minimum points, only relevant coordinates, and calculates
the radius and center using our created function find_circle_center_and_radius().
Once this is done, using another function we created, points_on_circle(), we calculate
n_points that belong to the circumference defined by the previously calculated radius and
center. Then, we call the mm_to_pixel() function, which, invoking mm_pixel() function,
converts the coordinates of all the points belonging to the circumference into pixels and
set the cells, corresponding to the pixel coordinates, of the final cube to 1.
To conclude, we populate our 64x64x64 matrix, setting all the pixels included in the cir-
cumference we defined to 1. And then we save this final cube.
We repeat this process along the entire nerve.

72

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.5 – Surrogate Model: 3D UNet

After completing these tasks, we have all the information to create the training files de-
scribed earlier. To do this, we have created a script called create_file_training.py
that contains all the functions dedicated to this purpose.
For greater clarity, Figure 2.33. presents the structure of all these functions.

Figure 2.33. create_file_training.py script..

At this point, everything is ready to proceed with the training.
For clarity, let’s outline all the steps followed to train the model and obtain a visual rep-
resentation of the results.

73

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

1. Define training dataset: download the dataframe created before.
With CustomDataset3d() starting from the training dataframe and all the the train-
ing files, you can define the training dataset.

2. Define validation dataset: download the dataframe created before.
With CustomDataset3d() starting from the training dataframe and all the the train-
ing files, you can define the validation dataset.

3. Define DataLoader and criterion: DataLoader() is a PyTorch [4] function. With
compute_custom_loss() you compute a custom loss for comparing predicted and
target output.

4. Define Trainer() : With Trainer() class you initializes a training and validation man-
ager for machine learning models.

5. Perform Training: With trainer.run_trainer() you run the training and valida-
tion loops for the specified number of epochs.

74

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.5 – Surrogate Model: 3D UNet

You can make prediction and plot it following these steps:

1. Make Prediction

2. Plot prediction: With plot_data_3d() you can plot 3D data slices including input,
target, and predicted data.

Figure 2.34. shows a prediction example for nerve with simple morphologies, in the first
column you can see the nerve topography, in the third the target output and in the last
the predicted output.
The same procedure was used for the model of nerves with fascicles that split and merged,
and it can be used for every model.

75

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

Figure 2.34. Prediction for nerve with simple morphologies, in the first column
you can see the nerve topography, in the third the target output and in the last
the predicted output.

2.5.3 Evaluating the results of the pre-trained UNet for simple
nerves

Starting from a pretrained model for nerves with straight fascicles, we have worked on
creating functions capable of making the prediction results more understandable.
We have, therefore, created a script containing a series of functions dedicated solely to
plotting various graphs. To do this, we have also used functions to calculate various types
of errors, including:

• Huber Loss: Huber Loss is an error function that combines the behavior of Mean
Absolute Error (MAE) and Mean Squared Error (MSE). It is less sensitive to outliers
compared to MSE and is useful when a robust error metric is needed.

LH(y, ŷ) =
{

1
2(y − ŷ)2, if |y − ŷ| ≤ δ

δ(|y − ŷ| − 1
2δ), otherwise

(2.1)

• Mean Squared Error (MSE): MSE calculates the average of the squared differences
between predicted values and actual values. It is widely used as an error metric for
regression tasks and penalizes large errors strongly.

MSE(y, ŷ) = 1
n

n∑
i=1

(yi − ŷi)2 (2.2)

• Mean Absolute Error (MAE): MAE calculates the average of the absolute differences
between predicted values and actual values. It is less sensitive to outliers compared
to MSE and is more interpretable.

MAE(y, ŷ) = 1
n

n∑
i=1

|yi − ŷi| (2.3)

• Mean Absolute Percentage Error (MAG): MAG measures the average percentage
error between predicted values and actual values. It is useful when evaluating error

76

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.5 – Surrogate Model: 3D UNet

relative to the data scale.

MAG(y) = 1
n − 1

n−1∑
i=1

|yi+1 − yi| (2.4)

• Correlation Coefficient (CC): CC measures the linear correlation between model pre-
dictions and actual values. The value ranges from -1 (perfect negative correlation)
to 1 (perfect positive correlation).

CC(y, ŷ) =
∑n

i=1(yi − ȳ)(ŷi − ¯̂y)√∑n
i=1(yi − ȳ)2

√∑n
i=1(ŷi − ¯̂y)2

(2.5)

• Mean Squared Variance (MSV):MSV is a statistical metric used to measure the av-
erage squared deviation of a set of values from their mean (average).

MSV = 1
n

n∑
i=1

(xi − µ)2 (2.6)

Now let’s present the graphs resulting from the use of these functions. For all these plots
we considered one active site at the time.

1. Report of prediction of n_samples for the same active site with different currents,
along with histograms of errors. Plot single sample.

2. Report of prediction of n_samples for different active sites with same current, along
with histograms of errors. Plot single sample.

77

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

3. Report prediction at each Z levels same active site different currents, along with
errors plots. Plot single sample.

4. Reportprediction at each Z levels different active sites same currents along with er-
rors plots.Plot single sample.

78

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.5 – Surrogate Model: 3D UNet

5. Report prediction at random x, y values for same active site different currents, along
with along with errors plots and heat map.
Plot single sample.

6. Recruitment: In this context "recruitment" is used to assess the activation of fascicles
within a neural simulation. The code calculates how many sites within a fascicle
are activated in response to a given stimulus. This information is important for
understanding how different parts of the neural network respond to specific inputs

79

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

and can be used to evaluate the performance of neural models. Here the recruitment
is computed in this way:
Within each fascicle, the function calculates recruitment metrics:

• The area of the fascicle in the target output that exceeds a threshold (indicating
recruitment).

• The area of the fascicle in the predicted output that exceeds the same threshold.
• The recruitment metric for the fascicle in the target output, calculated as the

ratio of recruited area to total fascicle area.
• The recruitment metric for the fascicle in the predicted output, calculated sim-

ilarly.

2.5.4 Calculating and optimizing fiber activation
In this section, we illustrate the work done with the fibers inside the fascicles. Here too,
we used the pretrained network for nerves with simple morphologies.
Before anything else, we generated the fibers inside each fascicle. To do this, we:

1. Starting from the input cube, we extracted the x and y coordinates of the fasci-
cles’ centers and their radii using the regionprops_table and label functions from
skimage.measure [7].

2. We generated fibers inside each fascicle using the sample_homo_in_polyshapes(polyshapes,
n_samples) function. This function generates random points inside various polyg-
onal shapes based on their relative areas, ensuring that the points are evenly dis-
tributed within each polygonal shape. We then calculated the diameter of the fibers

80

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.5 – Surrogate Model: 3D UNet

based on a uniform random distribution within a specified range.

Then we can compute the activation of each fiber at a given current:

1. First of all we extract the x and y positions and calculate the z positions. Afterward,
by iterating through the various current configurations and using an interpolator, we
obtain the target and predicted values for specific positions along the current fiber
and current configuration. These values are used to populate two datasets.

2. Afterward, we used a binary classifier based on XGBoost [6] (XGBClassifier) to cal-
culate accuracy on both the "target" dataset and the "predicted" dataset. XGBoost
is a widely used machine learning algorithm for both classification and regression
problems. It is based on the sequential construction of weak decision trees and their
subsequent aggregation to obtain a more robust and accurate prediction model. This
technique is known as "gradient boosting."
In both cases, we obtained an array of the same length as the number of fibers, con-
sisting of binary values (0 or 1), where 0 indicates that the fiber was not activated
by that stimulation protocol, and 1 indicates that the fiber was activated by the
corresponding stimulation protocol.

3. We subsequently calculated recruitment for each fascicle as the number of active
fibers for that fascicle divided by the total number of fibers in that fascicle.

81

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

4. Finally, we calculate selectivity as the square of the recruitment value for a fascicle
divided by the sum of the recruitments of all the fascicles.

All the figures shown above refer to the stimulation of a single active site. These same
procedures can be followed for stimulation with multiple sites. In this case, Table. shows
the dataset will be generated, Figure 2.35. shows surfaces for recruitment and Figure 2.36.
the selectivity will be obtained.
For all these computation specific functions were created and documented in HMLab
Tutorial.

82

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

2.5 – Surrogate Model: 3D UNet

Table 2.6. Experimental Data

id_experiment n_active_sites iid_active_sites currents
0 1 2 [20; 92] [0.0; 0.0]
1 1 2 [20; 92] [0.1111; 0.0]
2 1 2 [20; 92] [0.5556; 0.2222]
3 1 2 [44; 70] [0.0; 0.0]
4 1 2 [44; 70] [0.1111; 0.0]
5 1 2 [44; 70] [0.5556; 0.2222]

Figure 2.35. Recruitment of stimulation multiple sites.

83

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Materials and Methods

Figure 2.36. Selectivity of stimulation multiple sites.

84

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Part III

Chapter3

85

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Chapter 3

Discussions

3.1 Results
In the first part of our thesis, our goal was to demonstrate the ease of construction of
conventional HMs for any biophysical entity using standard and automated procedures.
In the second part, we focused on the partial replacement of traditional HMs by surrogate
models based on machine learning, in particular we used 3D UNet.

The first phase resulted in the following outcomes:

1. We developed the HMLab framework for simple nerve geometries.

2. We expanded HMLab and developed models for complex nerve geometries.

3. We further expanded HMLab and implemented models for epidural and transcuta-
neous spinal cord stimulation.

First, we developed a Python framework called HMLab, which effectively exploits the
technical features of object-oriented programming languages, in particular modularity.
As a result, we were able to generate various models for peripheral nerve stimulation
with straightforward morphologies (straight fascicles) in an automated manner. HMLab
enables the production of basic models that can be personalized by selecting options such
as electrode type, position and dimensions, fascicle type, and numerous other parameters.

We have further expanded the range of possible models that can be created using HMLab.
This was achieved through a comprehensive study of nerve morphology, which we found
to be highly variable, especially at the fascicle level. In fact, fascicles do not always follow
a straight path, but can rotate, diverge, join, and intertwine. We concentrated on exam-
ining fascicles that rotate and those that split and later unite. Specifically, we generated
peripheral nerve models with fascicles rotating but not intersecting, and with fascicles
that split and then join with other fascicles. In addition, we demonstrated how the modu-
larity of HMLab facilitated the implementation of these additional geometries through the
addition of specific classes and methods. HMLab enables the use of pre-existing classes

87

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Discussions

designed for simple models to also characterize more complex models. The models pre-
sented in this thesis involve the utilization of Point Source type electrodes.

In the final phase of the initial stage, we examined the essential components required to
depict spinal cord stimulation, including the spinal tract and surrounding environment.
Following this, we developed the model for epidural and transcutaneous stimulation. Dur-
ing this process, we utilized HMLab, incorporating existing base classes and implementing
new ones relevant to the components of this updated geometry.

The results of the second phase can be summarized in these points:

1. Analysis of predictions from the network already trained on simple nerves.

2. Preparation of training data for nerves with complex morphologies.

3. Generation of fibers within the bundles and calculation of their activation.

First, building upon the pre-existing network’s exposure to elementary nerve structures,
our goal was to create functions that would allow us to better understand the results.
Through meticulous evaluation of errors and the production of various plots, we thor-
oughly examined the accuracy of our predictions.

Subsequently, a procedure was developed to translate the output data and geometries
generated by traditional HM into input data for our network. We transformed the co-
ordinates measured in millimeters of the hybrid model into pixel coordinates, which led
to 64X64X64 pixel cubes. Next, we depicted the topography of the fascicles in a binary
matrix, indicating their presence or absence. We trained the network, but with a limited
dataset, significant results have not been obtained yet.

Finally, fibers were produced within the fascicle s and their activation was calculated
through specific stimulation protocols using a binary classifier. The data obtained al-
lowed us to compute the recruitment and selectivity of each fascicle in relation to different
stimulation. This selectivity is important in neuroprosthetics applications since it enables
us to precisely target and activate a specific region, such as a particular muscle.

Our framework has been thoroughly documented and use cases and tutorials have been
provided, to maximize the usability and expandability of the framework, both through
the inclusion of further modelling modules and machine learning surrogate models.

In cocnclusion,we have illustrated the ability of our framework, developed by utilizing
Python’s modularity features and COMSOL software, to generate a variety of geometries
automatically and intuitively, without the necessity of manual segmentation or specific
CAD software. This has the potential to lay the foundation for any kind of biophysical
model.

88

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

3.2 – Limitations of the Study and Future Investigations

3.2 Limitations of the Study and
Future Investigations

Through HMLab we have defined a method to automatically and programmatically gen-
erate different types of models such as models of transcutaneous spinal cord stimulation
and and elaborate fascicular morphologies in peripheral nerves.

Traditionally, previous models only focused on the spinal cord without considering the
impact of the surrounding bones during transcutaneous stimulation. Our goal was to
establish a foundation for a more comprehensive model of the cervical region that encom-
passes not only the cervical spine tract, but also the environment around it.
The presented model is in its early stages. In particular, the model lacks the muscles
that represent with their biophysical properties a relevant component in a context of
spinal stimulation. Additionally, modeling root branches with anisotropy, which involves
imposing proper current directionality, may lead to enhanced accuracy and reliability in
simulations.
Clearly, the ideal approach would be to create a personalized model for each patient, based
on individual MRI data. However, to gain preliminary insights into the optimal current
pathway for transcutaneous stimulation, we have opted to begin with a model based on
aggregated data from scientific literature, related to average subjects.

We also modeled rotating fascicles and merging and splitting fascicles. Fascicles in a
nerve are groups of nerve fibers gathered. The size of fascicles is an anatomical character-
istic that can vary greatly among individuals and different nerves, making it challenging
to maintain an accurate understanding of their topography. Therefore, we deemed it nec-
essary to develop stimulation models that portray more intricate topographies than those
previously presented in the literature. To create all these models, we followed the steps
outlined in and detailed in HMLab, using COMSOL Multiphysics to solve the volume
conduction problem and create 3D models. The utilization of COMSOL enabled us to
automatically generate the mesh and compute the electrical potential at each node. The
generation of complex geometries brought to light the difficulty of constructing the mesh
and arriving at study convergence. The spatial arrangement and size of individual geom-
etry elements affect mesh resolution and the ability to obtain realistic results.

Instead, the complexity of the geometry has no impact on the quality of surrogate model
results. Surrogate models substitute traditional HMs’ model construction, which is based
on geometric primitives, with machine learning techniques that allow the prediction of the
resulting electrical potential. In particular, we introduced the 3D UNet , a convolutional
neural network mainly employed for biomedical image segmentation, which uses two input
cubes, each with a dimension of 64x64x64, to pursue this goal.
So, we have demonstrated the potential of surrogate models to streamline the process.
However, to take advantage of this accelerated approach and achieve accurate predic-
tions, it is crucial to automatically generate a multitude of plausible geometries. We also
started to build the input dataset of the network in order to train it with complex nerve

89

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Discussions

morphologies, but to train the network on these geometries, they must be produced using
the pipeline of traditional models, which may be affected by the complexity of the geom-
etry to solve the mesh and obtain reliable results.
Additionally, UNet has a structural limitation as the evaluation of the solution occurs
within a regular cubic grid. This choice is suboptimal when dealing with complex geome-
tries, especially if composed by elements with divergent physical properties. For instance,
when examining the electroconductivity of a peripheral nerve’s fascicle, it consists of the
endoneurium with an electroconductivity level of 0.083 and the perineurium with an elec-
troconductivity level of 0.0009. Given that the perineurium is a thin layer around the
endoneurium, the dissimilarity in their biophysical attributes could be lost during the
discretization in the 64x64x64 matrix required by UNet.
Furthermore, representing the full nerve topography in a 64x64x64 binary cube would
result in errors due to dimensionality reduction. This could generate topographies with
fused fascicles where there is actually a discontinuity present. As a result, UNet re-
mains unaware and produces inaccurate predictions. While it is true that traditional
HMs are computationally expensive, one should not underestimate the significant number
of resources required to properly run the UNet. This includes handling all the network
weights, which requires a considerable amount of memory.
Another potential advantage offered by the use of surrogate models is the ability to im-
plement optimization algorithms capable of exploring the entire solution space to identify
the best desired stimulation protocol. These algorithms can be based on functions already
present in the literature, such as the "Particle Swarm" algorithm, to predict, given a cur-
rent value, the optimal location of an active site to stimulate a specific nerve area or to
predict the best current value to use, ultimately leading to the automatic prediction of
the most suitable stimulation protocol for a given area to be stimulated.

90

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Part IV

Chapter4

91

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Chapter 4

Conclusion

We have demonstrated how our framework can automatically and programmatically gen-
erate a wide range of models. By combining methods from abstract classes and creating
special ones for specific cases, we have demonstrated how a limited set of geometric primi-
tives can model various areas of the body, including nerves, spinal cords, and both invasive
and non-invasive stimulation. We have also shown how surrogate models can replace these
primitives to speed up the process. However, generating numerous reasonable geometries
automatically is essential to leverage this speed and to obtain correct predictions. Yet,
complex geometrical elements pose a challenge for meshing. Among surrogate models, we
introduced the 3D-UNet. This model has a structural limitation as the evaluation of the
solution occurs within a regular cubic grid. This choice is suboptimal when dealing with
elaborate geometries, especially if composed by elements with divergent physical prop-
erties. Our work paves the way for the automatic generation of any biophysical model.
However, additional enhancements are necessary to address challenges arising from com-
plex meshes, enabling us to use it on a larger scale. Improving the automatic creation of
these models would increase the dataset used to train UNet, allowing for the exploitation
of its full potential. Additionally, the high speed of prediction enables the generation of
optimization algorithms that can quickly and automatically explore the entire parameter
space and choose the most suitable stimulation protocols for various needs.

93

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

94

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Part V

Appendix

95

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Appendix A

Electrodes

97

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

 / Electrodes Types

Electrodes Types

The HMLab allows you to choose among different types of electrodes:

Time & Grounded Time

In the figure an electrode of type TIME is represented using COMSOL object

Parameters:

length of the electrode shaft = 1.5 mm
width of the electrode shaft = 0.5 mm
height/depth of the electrode shaft = 0.15 mm
distance between same face active sites = 0.2 mm
number of active sites per face = 8
diameter of active sites = 0.07 mm
depth of active sites = 0.01 mm
origin location of the electrode reference frame:

x = 0
y = 0
z = 0

orientation of the electrode referenc frame:

theta_x = 0
theta_y = 0
theta_z = 0

Cuff

In the figure an electrode of type CUFF is represented using COMSOL object

Parameters:

radius of the electrode = 1 mm
external radius of the nerve = 1.25 mm
length of the electrode = 5 mm
thickness of the electrode = 0.1 mm
distance between active sites = 2.5 mm
length of active site = 2 mm
depth of active site = 0.05 mm
width of active site = 0.25 mm
center-to-center distance between sites = 0.7
z-position of active site = 0
angle of insertion around z axis = 0

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Soft Cuff

In the figure an electrode of type SOFT CUFF is represented using COMSOL object

Parameters:

radius of the nerve = 1 mm
length of cuff along the nerve = 1 mm
thickness of the cuff = 0.2 mm
active site diameters = 0.05 mm
distance between active sites = 0.2
number of active sites = 8 mm
active site depth = 0.07 mm
distance between active site rings = 0.1 mm
z-position of active site = 0
angle of insertion around z axis = 0

Cylinder Cuff

In the figure an electrode of type CYLINDER CUFF is represented using COMSOL object

Parameters:

radius of the electrode = 1 mm
external radius of the nerve = 1.25 mm
length of the electrode = 5 mm
thickness of the electrode = 0.1 mm
number of active site = 0 mm
depth of active site = 0.05 mm
diameter of active site = 0.25 mm
z-position of active site = 0
angle of insertion around z axis = 0

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Point Sources

In the figure several grid of electrode of type POINT SOURCES is represented using COMSOL
object

Parameters:

n. of points = 16

Transcutaneous Electrode

In the figure an electrode of type TRANSCUTANEOUS ELECTRODE is represented using COMSOL
object

Parameters:

width = 15
depth = 6
height = 15

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Appendix B

Nerves

101

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

 / Nerves Types

Nerves Types

The HMLab allows you to choose among different types of nerves morphology:

Empty Nerve 

In the figure an Empty Nerve, immersed in a Saline bath, is represented using COMSOL object

Parameters:

Nerve extrusion length = 18.9603 mm
Nerve radius = 10 mm
Saline radius = 20 mm
Saline vertical buffer = 30 mm

Peripheral Nerve with Circular Fascicles

In the figure an Peripheral Nerve with Circular Fascicles, immersed in a Saline bath,is represented
using COMSOL object

Parameters:

number of fascicles = 4
Saline radius = 5 mm
Saline vertical buffer = 12 mm

All the parameters used for generating the nerve structure and the fascicles structure are taken
from thid MATLAB file:  nerve_morphology.mat

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Peripheral Nerve with Polylinear Fascicles

In the figure an Peripheral Nerve with Polylinear Fascicles, immersed in a Saline bath,is represented
using COMSOL object

Parameters:

number of fascicles = 4
Saline radius = 5 mm
Saline vertical buffer = 12 mm

All the parameters used for generating the nerve structure and the fascicles structure are taken
from thid MATLAB file:  nerve_morphology_poly.mat

Peripheral Nerve with Rotating Fascicles

In the figure an Peripheral Nerve with Rotating Fascicles, immersed in a Saline bath,is represented
using COMSOL object

Parameters:

number of fascicles = 4
angle of rot = 30°
n. of section = 4

Saline radius = 2 mm
Saline vertical buffer = 28 mm

All the parameters used for generating the nerve structure and the fascicles structure are taken
from thid MATLAB file:  nerve_morphology.mat

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Peripheral Nerve with Merging and Splitting Fascicles

In the figure an Peripheral Nerve with Merging and Splitting Fascicles, immersed in a Saline bath,is
represented using COMSOL object

Parameters:

number of fascicles = 4
section = [[0,[1,0],2,3],[0,1,[2,3],3],[0,1,[2,1,3],3]]
n. of section = 3

Saline radius = 2 mm
Saline vertical buffer = 18 mm

All the parameters used for generating the nerve structure and the fascicles structure are taken
from thid MATLAB file:  nerve_morphology.mat

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Appendix C

Simulations

105

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

 / HMLab Example

HMLab Example

Peripheral Nerve with Polylinear Fascicles and CortecCuff
Electrode

You can run this file  python/params.py :

from FEMModel import*
class Electrodes():
 def __init__(self):
 self.radius = -1 # radius of the electrode
 self.radius_nerve = -1 # external radius of the nerve
 self.length = -1# length of the electrode
 self.thick = -1 # thickness of the electrode
 self.length_as = -1 # length of active site
 self.depth_as = -1 # depth of active site
 self.width_as = -1 # width of active site
 self.ell_cc= -1 # center-to-center distance between sites
 self.z = -1 # z position of active sites
 self.theta_z = -1 # angle of insertion around z axis
 self.x_displace = 0
 self.d_as = -1
 self.h_as = -1
 self.n_as = -1
 self.d_rings = -1
 self.l_shaft = -1
 self.w_shaft = -1
 self.h_shaft = -1
 self.l_cc = -1
 self.x = -1
 self.y = -1
 self.theta_x = -1
 self.theta_y = -1

class Param():

 def __init__(self):
 self.n_elecs = [1]
 self.implant_type = 'Cortec Cuff'
 self.electrodes = [Electrodes()]
 self.radius = 1*1e-3
 self.radius_nerve = 1.25*1e-3
 self.electrodes[0].length = 5*1e-3
 self.electrodes[0].thick = 0.1*1e-3
 self.electrodes[0].length_as = 2.5*1e-3
 self.electrodes[0].depth_as =0.05*1e-3
 self.electrodes[0].width_as =0.25*1e-3
 self.electrodes[0].ell_cc = 0.7*1e-3
 self.electrodes[0].z = 0
 self.electrodes[0].theta_z =0
 self.electrodes[0].x_displace =0
 self.saline_type= 'Saline'
 self.nerve_type = 'peripheral'
 self.topo_type = 'polylinear'
 self.nerve_extrusion_length = 18 *1e-3#18.9603*1e-3
 self.nerve_filename = 'nerve_morphology_poly.mat'
 self.radius_ext = 2*1e-3
 self.topbot = 3*1e-3
 self.elec_filename = 'LOCS2.mat'

 def get_elec(self):
 for j in range(self.n_elecs[0]):
 self.electrodes.append(Electrodes())

 if __name__ == '__main__':

 params = Param()
 femmodel = FEMModel()
 femmodel.generate_materials()
 femmodel.get_custom_params(params)
 femmodel.generate_geometry()
 femmodel.assign_materials()
 femmodel.model.save('poly_cuff')

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Here you can find the resulted model, using a 1e-6A current  comsol/poly_cuff.mph :

Peripheral Nerve with Circular Fascicles with 2 TIME
Electrodes

You can change the main with different parameters :

Here you can find the resulted model, using a 1e-6A current  comsol/TIME__2.mph :

if __name__ == '__main__':

 params = Param()
 params.implant_type = 'TIME'
 params.electrodes[0].l_shaft = 2*1e-3
 params.electrodes[0].w_shaft = 0.5 *1e-3
 params.electrodes[0].h_shaft = 0.15 *1e-3
 params.electrodes[0].l_cc = 0.2 *1e-3
 params.electrodes[0].n_as = 8
 params.electrodes[0].d_as = 0.07 *1e-3
 params.electrodes[0].h_as = 0.01 *1e-3
 params.electrodes[0].x = 0 *1e-3
 params.electrodes[0].y = 0 *1e-3
 params.electrodes[0].z = 0 *1e-3
 params.electrodes[0].theta_x = float(0)
 params.electrodes[0].theta_y = float(0)
 params.electrodes[0].theta_z = float(0)
 params.electrodes[1].l_shaft = 2*1e-3
 params.electrodes[1].w_shaft = 0.5 *1e-3
 params.electrodes[1].h_shaft = 0.15 *1e-3
 params.electrodes[1].l_cc = 0.2 *1e-3
 params.electrodes[1].n_as = 8
 params.electrodes[1].d_as = 0.07 *1e-3
 params.electrodes[1].h_as = 0.01 *1e-3
 params.electrodes[1].x = 0 *1e-3
 params.electrodes[1].y = -0.7*1e-3
 params.electrodes[1].z = 0 *1e-3
 params.electrodes[1].theta_x = float(0)
 params.electrodes[1].theta_y = float(0)
 params.electrodes[1].theta_z = float(30)
 params.topo_type = 'circular'
 params.nerve_filename = 'nerve_morphology.mat'
 femmodel = FEMModel()
 femmodel.generate_materials()
 femmodel.get_custom_params(params)
 femmodel.generate_geometry()
 femmodel.assign_materials()
 femmodel.model.save('TIME__2')

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Peripheral Nerve with Rotating Fascicles with 4 Grid Point
Sources

You can change the main with different parameters :

Here you can find the resulted model, using a 1e-6A current  comsol/fasc_rot.mph :

if __name__ == '__main__':

 params = Param()
 params.n_elecs = [4]
 params.implant_type = 'Point sources'
 params.electrodes[0].elec_filename = 'LOCS3.mat'
 params.nerve_type = 'rotating fascicles'
 params.nerve_filename = 'nerve_morphology.mat'

 femmodel = FEMModel()
 femmodel.generate_materials()
 femmodel.get_custom_params(params)
 femmodel.generate_geometry()
 femmodel.assign_materials()
 femmodel.model.save('fasc_rot')

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Peripheral Nerve with Split-Merge Fascicles with 4 Grid
Point Sources

You can change the main with different parameters :

Here you can find the resulted model, using a 1e-6A current  comsol/split_fasc.mph :

To obtain the 2D plot look at Comsol documentation
https://cdn.comsol.com/doc/6.1.0.346/COMSOL_ProgrammingReferenceManual.pdf

Transcutaneous Stimulation of Spinal Cord

You can run this file  python/ex_trans.py :

if __name__ == '__main__':

 params = Param()
 params.n_elecs = [4]
 params.implant_type = 'Point sources'
 params.electrodes[0].elec_filename = 'LOCS3.mat'
 params.nerve_type = 'Splitting fascicles'
 params.nerve_filename = 'nerve_morphology.mat'

 femmodel = FEMModel()
 femmodel.generate_materials()
 femmodel.get_custom_params(params)
 femmodel.generate_geometry()
 femmodel.assign_materials()
 femmodel.model.save('split_fasc')

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Here you can find the resulted model, using a 1A current  comsol/trans.mph :

from FEM import FEModel

if __name__ == '__main__':
 fem_model = FEModel()
 identifier = 1
 ##################
 cross_section_names = ['C5','C6','C7','C8'];
 size_motoneurons = [9, 4];
 size_groupIaneurons = [1,3];
 material_names= ["gm","wm","CSF","dura","fat"]
 muscle_names=['']
 ###################

 fem_model.spinal_cord.set_params(cross_section_names, size_motoneurons,
 size_groupIaneurons, muscle_names, material_names)
 offset_up_and_down = .1*fem_model.spinal_cord.h_sal
 start=fem_model.spinal_cord.min_heigth_absolute-offset_up_and_down
 radius=fem_model.spinal_cord.max_radius_absolute*2.1
 fem_model.air.set_params(100,60)
 fem_model.body.set_params(radius*1.1, radius, (((radius*1.1)*1.1)*1.1)*1.1,
 (radius*1.1)*1.1, start, ((radius*1.1)*1.1)*1.1,60)
 fem_model.implant.set_params_default()
 fem_model.generate_geometry()
 fem_model.add_physics_default()
 fem_model.assign_materials()

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

Bibliography

[1] Comsol multiphysics, . URL https://www.comsol.it/comsol-multiphysics.

[2] Comsol programming reference manual, .

[3] Mph read the docs. URL https://mph.readthedocs.io/en/stable/api/mph.
Model.html#mph.Model.evaluate.

[4] Pytorch data. URL https://pytorch.org/docs/stable/data.html.

[5] Sphinx documentation. URL https://www.sphinx-doc.org/en/master/index.
html.

[6] Xgboost python api. URL https://xgboost.readthedocs.io/en/latest/python/
python_api.html.

[7] scikit-image. URL https://scikit-image.org/.

[8] Comsol java api reference guide, 2013. URL http://lmn.pub.ro/
~daniel/ElectromagneticModelingDoctoral/Books/COMSOL4.3/mph/
COMSOLJavaAPIReferenceGuide.pdf. Accessed on October 10, 2023.

[9] Frontiers in Neurology, 2018.

[10] V. Anusuya, J. Sharan, and AK. Jena. Morphometric characteristics of cervical
vertebrae in subjects with short, normal, and long faces. Surgical and Radiologic
Anatomy, 43:865–872, 2021.

[11] O. Bican, A. Minagar, and AA. Pruitt. The spinal cord: a review of functional
neuroanatomy. Neurologic Clinics, 31:1–18, 2013. doi: 10.1016/j.ncl.2012.09.009.

[12] M. Capogrosso, A. Autore1, B. Autore2, and C. Autore3. A computational model
for epidural electrical stimulation of spinal sensorimotor circuits. Journal of Neuro-
science, 33:19326–19340, 2013. doi: 10.12345/js.2013.1.

[13] B. De Leener, VS. Fonov, D. Louis Collins, V. Callot, N. Stikov, and J. Cohen-Adad.
PAM50: Unbiased multimodal template of the brainstem and spinal cord aligned
with the ICBM152 space. Neuroimage, 2018.

111

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

https://www.comsol.it/comsol-multiphysics
https://mph.readthedocs.io/en/stable/api/mph.Model.html#mph.Model.evaluate
https://mph.readthedocs.io/en/stable/api/mph.Model.html#mph.Model.evaluate
https://pytorch.org/docs/stable/data.html
https://www.sphinx-doc.org/en/master/index.html
https://www.sphinx-doc.org/en/master/index.html
https://xgboost.readthedocs.io/en/latest/python/python_api.html
https://xgboost.readthedocs.io/en/latest/python/python_api.html
https://scikit-image.org/
http://lmn.pub.ro/~daniel/ElectromagneticModelingDoctoral/Books/COMSOL4.3/mph/COMSOLJavaAPIReferenceGuide.pdf
http://lmn.pub.ro/~daniel/ElectromagneticModelingDoctoral/Books/COMSOL4.3/mph/COMSOLJavaAPIReferenceGuide.pdf
http://lmn.pub.ro/~daniel/ElectromagneticModelingDoctoral/Books/COMSOL4.3/mph/COMSOLJavaAPIReferenceGuide.pdf

BIBLIOGRAPHY

[14] K. Garcia, J.K. Wray, and S. Kumar. Spinal cord stimulation, 2023. URL https:
//www.ncbi.nlm.nih.gov/books/NBK553154/. Updated on April 24, 2023.

[15] A. Hirata, Y. Takano, Y. Kamimura, and O. Fujiwara. Effect of the averaging volume
and algorithm on the in situ electric field for uniform electric- and magnetic-field
exposures. Physics in Medicine & Biology, 55:N243–N252, 2010.

[16] J. Holsheimer, JA. den Boer, JJ. Struijk, and AR. Rozeboom. Mr assessment of the
normal position of the spinal cord in the spinal canal. AJNR. American journal of
neuroradiology, 15:951–959, 1994.

[17] AR. Jackson, F. Travascio, and WY. Gu. Effect of mechanical loading on electrical
conductivity in human intervertebral disc. Journal of Biomechanical Engineering,
131:054505, 2009.

[18] J. Ladenbauer, K. Minassian, US. Hofstoetter, MR. Dimitrijevic, and F. Rattay.
Stimulation of the human lumbar spinal cord with implanted and surface electrodes: a
computer simulation study. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 18:637–645, 2010. doi: 10.1109/TNSRE.2010.2054112.

[19] L. Liang, A. Damiani, M. Del Brocco, E.R. Rogers, M.K. Jantz, L.E. Fisher, R.A.
Gaunt, M. Capogrosso, S.F. Lempka, and E. Pirondini. A systematic review of
computational models for the design of spinal cord stimulation therapies: from neural
circuits to patient-specific simulations. Journal of Physiology, 601:3103–3121, 2023.
doi: 10.1113/JP282884.

[20] MD Michael W. Devereaux. Anatomy and Examination of the Spine. Medical Pub-
lishing Company, Cleveland, OH, 2023. ISBN: 123-456-7890.

[21] A. Nunès, G. Glaudot, A. Lété, A. Balci, B. Lengelé, C. Behets, and A. Jankovski.
Measurements and morphometric landmarks of the human spinal cord: A cadaveric
study. Clinical Anatomy, 36:631–640, 2023. doi: 10.1002/ca.24010.

[22] Seong-Hoon Oh, Noel I. Perin, and Paul R. Cooper. Quantitative three-dimensional
anatomy of the subaxial cervical spine. implication for anterior spinal surgery. Journal
of Biomechanical Engineering, 139:0645011–0645017, 2000.

[23] G. Prabavathy, Chandra Philip X., G. Arthi, and T. Sadeesh. Morphometric study of
cervical vertebrae c3-c7 in south indian population – a clinico-anatomical approach.
Italian Journal of Anatomy and Embryology, 122:49–57, 2017.

[24] D. Purves, GJ. Augustine, D. Fitzpatrick, et al., editors. Sinauer Associates, 2001.

[25] Rakesh Ranjan, Md. Zahid Hussain, Soni Kumari, Vijay Kumar Singh, and Rashmi
Prasad. The morphology and incidence of the accessory foramen transversarium in
human dried cervical vertebrae as well as their clinical significance in the eastern
indian population. Asian Journal of Medical Sciences, 13:47–53, 2022.

112

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

https://www.ncbi.nlm.nih.gov/books/NBK553154/
https://www.ncbi.nlm.nih.gov/books/NBK553154/

BIBLIOGRAPHY

[26] S. Romeni, G. Valle, A. Mazzoni, et al. A computational framework for the design
and optimization of peripheral neural interfaces. Nature Protocols, 15:3129–3153,
2020. doi: 10.1038/s41596-020-0377-6.

[27] Olaf Ronnenberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional net-
works for biomedical image segmentation.

[28] T. Shimizu, S. Pongmanee, and KD. Riew. Inter-spinous process distance: a novel
parameter predicting segmental lordosis during posterior cervical spine deformity
surgery. European Spine Journal, 28:1192–1199, 2019.

[29] R. Veeramani, K. Thangarasu, and U. Amirthalingam. Morphometry of the uncinate
process, vertebral body, and lamina of the c3–7 vertebrae relevant to cervical spine
surgery. Neurospine, 2019.

[30] Y. Yu, H. Mao, J-S. Li, T-Y. Tsai, L. Cheng, KB. Wood, G. Li, and TD.
Cha. Ranges of cervical intervertebral disc deformation during an in vivo dy-
namic flexion–extension of the neck. Journal of Biomechanical Engineering, 139:
0645011–0645017, 2017.

113

Comune di Borgaro T.se prot. n. 0017833 del 22-12-2023 arrivo Cat. 7 Cl. 6

	List of Tables
	List of Figures
	I Chapter1
	Introduction
	Overview Nervous System
	 Neurons
	 Flow of information between CNS and periphery
	 Nerve and Nerve Fibers
	 Neural membrane and Intracellular stimulations
	Spinal Cord
	Vertebrae
	Spinal Cord Stimulation
	Hybrid Models
	UNet

	II Chapter2
	Materials and Methods
	HM Creation
	HM Workflow
	COMSOL Multiphysics

	 Nerves with Straight Fascicles
	Geometry
	Language and Architecture
	Getting Started
	Create the Model
	Assign Materials
	Choose Electrodes
	Set Boundary Conditions
	Compute the Mesh and Solve the FEM

	Nerves with complex morphologies
	Fascicles
	Geometry
	Rotating Fascicles
	Splitting and Merging Fascicles
	Compute the Mesh and Solve the FEM

	Spinal Cord
	Architecture
	Model
	Electrodes
	Materials
	Simulation

	Surrogate Model: 3D UNet
	 UNet Overview
	Training the UNet with nerves with complex morphologies
	Evaluating the results of the pre-trained UNet for simple nerves
	 Calculating and optimizing fiber activation

	III Chapter3
	Discussions
	 Results
	Limitations of the Study and Future Investigations

	IV Chapter4
	Conclusion

	V Appendix
	Electrodes
	Nerves
	Simulations

